![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsfn0 | Structured version Visualization version GIF version |
Description: Algebraicity of a point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
acsfn0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} ∈ (ACS‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4396 | . . . 4 ⊢ ∅ ⊆ 𝑎 | |
2 | 1 | a1bi 362 | . . 3 ⊢ (𝐾 ∈ 𝑎 ↔ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)) |
3 | 2 | rabbii 3437 | . 2 ⊢ {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)} |
4 | 0ss 4396 | . . 3 ⊢ ∅ ⊆ 𝑋 | |
5 | 0fin 9177 | . . 3 ⊢ ∅ ∈ Fin | |
6 | acsfn 17610 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (∅ ⊆ 𝑋 ∧ ∅ ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) | |
7 | 4, 5, 6 | mpanr12 702 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
8 | 3, 7 | eqeltrid 2836 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} ∈ (ACS‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 {crab 3431 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 ‘cfv 6543 Fincfn 8945 ACScacs 17536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7860 df-en 8946 df-fin 8949 df-mre 17537 df-acs 17540 |
This theorem is referenced by: submacs 18750 |
Copyright terms: Public domain | W3C validator |