MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn0 Structured version   Visualization version   GIF version

Theorem acsfn0 17443
Description: Algebraicity of a point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn0 ((𝑋𝑉𝐾𝑋) → {𝑎 ∈ 𝒫 𝑋𝐾𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐾,𝑎   𝑉,𝑎   𝑋,𝑎

Proof of Theorem acsfn0
StepHypRef Expression
1 0ss 4340 . . . 4 ∅ ⊆ 𝑎
21a1bi 362 . . 3 (𝐾𝑎 ↔ (∅ ⊆ 𝑎𝐾𝑎))
32rabbii 3409 . 2 {𝑎 ∈ 𝒫 𝑋𝐾𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎𝐾𝑎)}
4 0ss 4340 . . 3 ∅ ⊆ 𝑋
5 0fin 9014 . . 3 ∅ ∈ Fin
6 acsfn 17442 . . 3 (((𝑋𝑉𝐾𝑋) ∧ (∅ ⊆ 𝑋 ∧ ∅ ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎𝐾𝑎)} ∈ (ACS‘𝑋))
74, 5, 6mpanr12 702 . 2 ((𝑋𝑉𝐾𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎𝐾𝑎)} ∈ (ACS‘𝑋))
83, 7eqeltrid 2841 1 ((𝑋𝑉𝐾𝑋) → {𝑎 ∈ 𝒫 𝑋𝐾𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  {crab 3403  wss 3896  c0 4266  𝒫 cpw 4544  cfv 6465  Fincfn 8782  ACScacs 17368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-om 7759  df-en 8783  df-fin 8786  df-mre 17369  df-acs 17372
This theorem is referenced by:  submacs  18539
  Copyright terms: Public domain W3C validator