MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn0 Structured version   Visualization version   GIF version

Theorem acsfn0 17601
Description: Algebraicity of a point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn0 ((𝑋𝑉𝐾𝑋) → {𝑎 ∈ 𝒫 𝑋𝐾𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐾,𝑎   𝑉,𝑎   𝑋,𝑎

Proof of Theorem acsfn0
StepHypRef Expression
1 0ss 4359 . . . 4 ∅ ⊆ 𝑎
21a1bi 362 . . 3 (𝐾𝑎 ↔ (∅ ⊆ 𝑎𝐾𝑎))
32rabbii 3408 . 2 {𝑎 ∈ 𝒫 𝑋𝐾𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎𝐾𝑎)}
4 0ss 4359 . . 3 ∅ ⊆ 𝑋
5 0fi 8990 . . 3 ∅ ∈ Fin
6 acsfn 17600 . . 3 (((𝑋𝑉𝐾𝑋) ∧ (∅ ⊆ 𝑋 ∧ ∅ ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎𝐾𝑎)} ∈ (ACS‘𝑋))
74, 5, 6mpanr12 705 . 2 ((𝑋𝑉𝐾𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎𝐾𝑎)} ∈ (ACS‘𝑋))
83, 7eqeltrid 2832 1 ((𝑋𝑉𝐾𝑋) → {𝑎 ∈ 𝒫 𝑋𝐾𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {crab 3402  wss 3911  c0 4292  𝒫 cpw 4559  cfv 6499  Fincfn 8895  ACScacs 17522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-en 8896  df-fin 8899  df-mre 17523  df-acs 17526
This theorem is referenced by:  submacs  18736
  Copyright terms: Public domain W3C validator