| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsfn0 | Structured version Visualization version GIF version | ||
| Description: Algebraicity of a point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsfn0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4365 | . . . 4 ⊢ ∅ ⊆ 𝑎 | |
| 2 | 1 | a1bi 362 | . . 3 ⊢ (𝐾 ∈ 𝑎 ↔ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)) |
| 3 | 2 | rabbii 3414 | . 2 ⊢ {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)} |
| 4 | 0ss 4365 | . . 3 ⊢ ∅ ⊆ 𝑋 | |
| 5 | 0fi 9015 | . . 3 ⊢ ∅ ∈ Fin | |
| 6 | acsfn 17626 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (∅ ⊆ 𝑋 ∧ ∅ ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) | |
| 7 | 4, 5, 6 | mpanr12 705 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
| 8 | 3, 7 | eqeltrid 2833 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3408 ⊆ wss 3916 ∅c0 4298 𝒫 cpw 4565 ‘cfv 6513 Fincfn 8920 ACScacs 17552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-lim 6339 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-om 7845 df-en 8921 df-fin 8924 df-mre 17553 df-acs 17556 |
| This theorem is referenced by: submacs 18760 |
| Copyright terms: Public domain | W3C validator |