| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsfn0 | Structured version Visualization version GIF version | ||
| Description: Algebraicity of a point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsfn0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . . . 4 ⊢ ∅ ⊆ 𝑎 | |
| 2 | 1 | a1bi 362 | . . 3 ⊢ (𝐾 ∈ 𝑎 ↔ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)) |
| 3 | 2 | rabbii 3411 | . 2 ⊢ {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)} |
| 4 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ 𝑋 | |
| 5 | 0fi 9013 | . . 3 ⊢ ∅ ∈ Fin | |
| 6 | acsfn 17620 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (∅ ⊆ 𝑋 ∧ ∅ ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) | |
| 7 | 4, 5, 6 | mpanr12 705 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ (∅ ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
| 8 | 3, 7 | eqeltrid 2832 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} ∈ (ACS‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ‘cfv 6511 Fincfn 8918 ACScacs 17546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-en 8919 df-fin 8922 df-mre 17547 df-acs 17550 |
| This theorem is referenced by: submacs 18754 |
| Copyright terms: Public domain | W3C validator |