Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lub0N Structured version   Visualization version   GIF version

Theorem lub0N 38047
Description: The least upper bound of the empty set is the zero element. (Contributed by NM, 15-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lub0.u 1 = (lubβ€˜πΎ)
lub0.z 0 = (0.β€˜πΎ)
Assertion
Ref Expression
lub0N (𝐾 ∈ OP β†’ ( 1 β€˜βˆ…) = 0 )

Proof of Theorem lub0N
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 eqid 2732 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
3 lub0.u . . 3 1 = (lubβ€˜πΎ)
4 biid 260 . . 3 ((βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)) ↔ (βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
5 id 22 . . 3 (𝐾 ∈ OP β†’ 𝐾 ∈ OP)
6 0ss 4395 . . . 4 βˆ… βŠ† (Baseβ€˜πΎ)
76a1i 11 . . 3 (𝐾 ∈ OP β†’ βˆ… βŠ† (Baseβ€˜πΎ))
81, 2, 3, 4, 5, 7lubval 18305 . 2 (𝐾 ∈ OP β†’ ( 1 β€˜βˆ…) = (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))))
9 lub0.z . . . 4 0 = (0.β€˜πΎ)
101, 9op0cl 38042 . . 3 (𝐾 ∈ OP β†’ 0 ∈ (Baseβ€˜πΎ))
11 ral0 4511 . . . . . . 7 βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧
1211a1bi 362 . . . . . 6 (π‘₯(leβ€˜πΎ)𝑧 ↔ (βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))
1312ralbii 3093 . . . . 5 (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 ↔ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))
14 ral0 4511 . . . . . 6 βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯
1514biantrur 531 . . . . 5 (βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧) ↔ (βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
1613, 15bitri 274 . . . 4 (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 ↔ (βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
1710adantr 481 . . . . . . 7 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ 0 ∈ (Baseβ€˜πΎ))
18 breq2 5151 . . . . . . . 8 (𝑧 = 0 β†’ (π‘₯(leβ€˜πΎ)𝑧 ↔ π‘₯(leβ€˜πΎ) 0 ))
1918rspcv 3608 . . . . . . 7 ( 0 ∈ (Baseβ€˜πΎ) β†’ (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ) 0 ))
2017, 19syl 17 . . . . . 6 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ) 0 ))
211, 2, 9ople0 38045 . . . . . 6 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (π‘₯(leβ€˜πΎ) 0 ↔ π‘₯ = 0 ))
2220, 21sylibd 238 . . . . 5 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 β†’ π‘₯ = 0 ))
231, 2, 9op0le 38044 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑧 ∈ (Baseβ€˜πΎ)) β†’ 0 (leβ€˜πΎ)𝑧)
2423adantlr 713 . . . . . . . . 9 (((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) ∧ 𝑧 ∈ (Baseβ€˜πΎ)) β†’ 0 (leβ€˜πΎ)𝑧)
2524ex 413 . . . . . . . 8 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (𝑧 ∈ (Baseβ€˜πΎ) β†’ 0 (leβ€˜πΎ)𝑧))
26 breq1 5150 . . . . . . . . 9 (π‘₯ = 0 β†’ (π‘₯(leβ€˜πΎ)𝑧 ↔ 0 (leβ€˜πΎ)𝑧))
2726biimprcd 249 . . . . . . . 8 ( 0 (leβ€˜πΎ)𝑧 β†’ (π‘₯ = 0 β†’ π‘₯(leβ€˜πΎ)𝑧))
2825, 27syl6 35 . . . . . . 7 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (𝑧 ∈ (Baseβ€˜πΎ) β†’ (π‘₯ = 0 β†’ π‘₯(leβ€˜πΎ)𝑧)))
2928com23 86 . . . . . 6 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (π‘₯ = 0 β†’ (𝑧 ∈ (Baseβ€˜πΎ) β†’ π‘₯(leβ€˜πΎ)𝑧)))
3029ralrimdv 3152 . . . . 5 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (π‘₯ = 0 β†’ βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧))
3122, 30impbid 211 . . . 4 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 ↔ π‘₯ = 0 ))
3216, 31bitr3id 284 . . 3 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ ((βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)) ↔ π‘₯ = 0 ))
3310, 32riota5 7391 . 2 (𝐾 ∈ OP β†’ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))) = 0 )
348, 33eqtrd 2772 1 (𝐾 ∈ OP β†’ ( 1 β€˜βˆ…) = 0 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3947  βˆ…c0 4321   class class class wbr 5147  β€˜cfv 6540  β„©crio 7360  Basecbs 17140  lecple 17200  lubclub 18258  0.cp0 18372  OPcops 38030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-proset 18244  df-poset 18262  df-lub 18295  df-glb 18296  df-p0 18374  df-oposet 38034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator