Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lub0N Structured version   Visualization version   GIF version

Theorem lub0N 39190
Description: The least upper bound of the empty set is the zero element. (Contributed by NM, 15-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lub0.u 1 = (lub‘𝐾)
lub0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
lub0N (𝐾 ∈ OP → ( 1 ‘∅) = 0 )

Proof of Theorem lub0N
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2737 . . 3 (le‘𝐾) = (le‘𝐾)
3 lub0.u . . 3 1 = (lub‘𝐾)
4 biid 261 . . 3 ((∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 0ss 4400 . . . 4 ∅ ⊆ (Base‘𝐾)
76a1i 11 . . 3 (𝐾 ∈ OP → ∅ ⊆ (Base‘𝐾))
81, 2, 3, 4, 5, 7lubval 18401 . 2 (𝐾 ∈ OP → ( 1 ‘∅) = (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
9 lub0.z . . . 4 0 = (0.‘𝐾)
101, 9op0cl 39185 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
11 ral0 4513 . . . . . . 7 𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧
1211a1bi 362 . . . . . 6 (𝑥(le‘𝐾)𝑧 ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))
1312ralbii 3093 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))
14 ral0 4513 . . . . . 6 𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥
1514biantrur 530 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
1613, 15bitri 275 . . . 4 (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧 ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
1710adantr 480 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾))
18 breq2 5147 . . . . . . . 8 (𝑧 = 0 → (𝑥(le‘𝐾)𝑧𝑥(le‘𝐾) 0 ))
1918rspcv 3618 . . . . . . 7 ( 0 ∈ (Base‘𝐾) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥(le‘𝐾) 0 ))
2017, 19syl 17 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥(le‘𝐾) 0 ))
211, 2, 9ople0 39188 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾) 0𝑥 = 0 ))
2220, 21sylibd 239 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥 = 0 ))
231, 2, 9op0le 39187 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑧 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑧)
2423adantlr 715 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑧)
2524ex 412 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → 0 (le‘𝐾)𝑧))
26 breq1 5146 . . . . . . . . 9 (𝑥 = 0 → (𝑥(le‘𝐾)𝑧0 (le‘𝐾)𝑧))
2726biimprcd 250 . . . . . . . 8 ( 0 (le‘𝐾)𝑧 → (𝑥 = 0𝑥(le‘𝐾)𝑧))
2825, 27syl6 35 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → (𝑥 = 0𝑥(le‘𝐾)𝑧)))
2928com23 86 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 0 → (𝑧 ∈ (Base‘𝐾) → 𝑥(le‘𝐾)𝑧)))
3029ralrimdv 3152 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 0 → ∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧))
3122, 30impbid 212 . . . 4 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥 = 0 ))
3216, 31bitr3id 285 . . 3 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ((∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ 𝑥 = 0 ))
3310, 32riota5 7417 . 2 (𝐾 ∈ OP → (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) = 0 )
348, 33eqtrd 2777 1 (𝐾 ∈ OP → ( 1 ‘∅) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wss 3951  c0 4333   class class class wbr 5143  cfv 6561  crio 7387  Basecbs 17247  lecple 17304  lubclub 18355  0.cp0 18468  OPcops 39173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-proset 18340  df-poset 18359  df-lub 18391  df-glb 18392  df-p0 18470  df-oposet 39177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator