Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lub0N Structured version   Visualization version   GIF version

Theorem lub0N 38059
Description: The least upper bound of the empty set is the zero element. (Contributed by NM, 15-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lub0.u 1 = (lubβ€˜πΎ)
lub0.z 0 = (0.β€˜πΎ)
Assertion
Ref Expression
lub0N (𝐾 ∈ OP β†’ ( 1 β€˜βˆ…) = 0 )

Proof of Theorem lub0N
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 eqid 2733 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
3 lub0.u . . 3 1 = (lubβ€˜πΎ)
4 biid 261 . . 3 ((βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)) ↔ (βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
5 id 22 . . 3 (𝐾 ∈ OP β†’ 𝐾 ∈ OP)
6 0ss 4397 . . . 4 βˆ… βŠ† (Baseβ€˜πΎ)
76a1i 11 . . 3 (𝐾 ∈ OP β†’ βˆ… βŠ† (Baseβ€˜πΎ))
81, 2, 3, 4, 5, 7lubval 18309 . 2 (𝐾 ∈ OP β†’ ( 1 β€˜βˆ…) = (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))))
9 lub0.z . . . 4 0 = (0.β€˜πΎ)
101, 9op0cl 38054 . . 3 (𝐾 ∈ OP β†’ 0 ∈ (Baseβ€˜πΎ))
11 ral0 4513 . . . . . . 7 βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧
1211a1bi 363 . . . . . 6 (π‘₯(leβ€˜πΎ)𝑧 ↔ (βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))
1312ralbii 3094 . . . . 5 (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 ↔ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))
14 ral0 4513 . . . . . 6 βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯
1514biantrur 532 . . . . 5 (βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧) ↔ (βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
1613, 15bitri 275 . . . 4 (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 ↔ (βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
1710adantr 482 . . . . . . 7 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ 0 ∈ (Baseβ€˜πΎ))
18 breq2 5153 . . . . . . . 8 (𝑧 = 0 β†’ (π‘₯(leβ€˜πΎ)𝑧 ↔ π‘₯(leβ€˜πΎ) 0 ))
1918rspcv 3609 . . . . . . 7 ( 0 ∈ (Baseβ€˜πΎ) β†’ (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ) 0 ))
2017, 19syl 17 . . . . . 6 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ) 0 ))
211, 2, 9ople0 38057 . . . . . 6 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (π‘₯(leβ€˜πΎ) 0 ↔ π‘₯ = 0 ))
2220, 21sylibd 238 . . . . 5 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 β†’ π‘₯ = 0 ))
231, 2, 9op0le 38056 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑧 ∈ (Baseβ€˜πΎ)) β†’ 0 (leβ€˜πΎ)𝑧)
2423adantlr 714 . . . . . . . . 9 (((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) ∧ 𝑧 ∈ (Baseβ€˜πΎ)) β†’ 0 (leβ€˜πΎ)𝑧)
2524ex 414 . . . . . . . 8 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (𝑧 ∈ (Baseβ€˜πΎ) β†’ 0 (leβ€˜πΎ)𝑧))
26 breq1 5152 . . . . . . . . 9 (π‘₯ = 0 β†’ (π‘₯(leβ€˜πΎ)𝑧 ↔ 0 (leβ€˜πΎ)𝑧))
2726biimprcd 249 . . . . . . . 8 ( 0 (leβ€˜πΎ)𝑧 β†’ (π‘₯ = 0 β†’ π‘₯(leβ€˜πΎ)𝑧))
2825, 27syl6 35 . . . . . . 7 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (𝑧 ∈ (Baseβ€˜πΎ) β†’ (π‘₯ = 0 β†’ π‘₯(leβ€˜πΎ)𝑧)))
2928com23 86 . . . . . 6 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (π‘₯ = 0 β†’ (𝑧 ∈ (Baseβ€˜πΎ) β†’ π‘₯(leβ€˜πΎ)𝑧)))
3029ralrimdv 3153 . . . . 5 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (π‘₯ = 0 β†’ βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧))
3122, 30impbid 211 . . . 4 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (βˆ€π‘§ ∈ (Baseβ€˜πΎ)π‘₯(leβ€˜πΎ)𝑧 ↔ π‘₯ = 0 ))
3216, 31bitr3id 285 . . 3 ((𝐾 ∈ OP ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ ((βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)) ↔ π‘₯ = 0 ))
3310, 32riota5 7395 . 2 (𝐾 ∈ OP β†’ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ βˆ… 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))) = 0 )
348, 33eqtrd 2773 1 (𝐾 ∈ OP β†’ ( 1 β€˜βˆ…) = 0 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062   βŠ† wss 3949  βˆ…c0 4323   class class class wbr 5149  β€˜cfv 6544  β„©crio 7364  Basecbs 17144  lecple 17204  lubclub 18262  0.cp0 18376  OPcops 38042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-proset 18248  df-poset 18266  df-lub 18299  df-glb 18300  df-p0 18378  df-oposet 38046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator