Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lub0N Structured version   Visualization version   GIF version

Theorem lub0N 36940
Description: The least upper bound of the empty set is the zero element. (Contributed by NM, 15-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lub0.u 1 = (lub‘𝐾)
lub0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
lub0N (𝐾 ∈ OP → ( 1 ‘∅) = 0 )

Proof of Theorem lub0N
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2737 . . 3 (le‘𝐾) = (le‘𝐾)
3 lub0.u . . 3 1 = (lub‘𝐾)
4 biid 264 . . 3 ((∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 0ss 4311 . . . 4 ∅ ⊆ (Base‘𝐾)
76a1i 11 . . 3 (𝐾 ∈ OP → ∅ ⊆ (Base‘𝐾))
81, 2, 3, 4, 5, 7lubval 17862 . 2 (𝐾 ∈ OP → ( 1 ‘∅) = (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
9 lub0.z . . . 4 0 = (0.‘𝐾)
101, 9op0cl 36935 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
11 ral0 4424 . . . . . . 7 𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧
1211a1bi 366 . . . . . 6 (𝑥(le‘𝐾)𝑧 ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))
1312ralbii 3088 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))
14 ral0 4424 . . . . . 6 𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥
1514biantrur 534 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
1613, 15bitri 278 . . . 4 (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧 ↔ (∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
1710adantr 484 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾))
18 breq2 5057 . . . . . . . 8 (𝑧 = 0 → (𝑥(le‘𝐾)𝑧𝑥(le‘𝐾) 0 ))
1918rspcv 3532 . . . . . . 7 ( 0 ∈ (Base‘𝐾) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥(le‘𝐾) 0 ))
2017, 19syl 17 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥(le‘𝐾) 0 ))
211, 2, 9ople0 36938 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾) 0𝑥 = 0 ))
2220, 21sylibd 242 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥 = 0 ))
231, 2, 9op0le 36937 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑧 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑧)
2423adantlr 715 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑧)
2524ex 416 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → 0 (le‘𝐾)𝑧))
26 breq1 5056 . . . . . . . . 9 (𝑥 = 0 → (𝑥(le‘𝐾)𝑧0 (le‘𝐾)𝑧))
2726biimprcd 253 . . . . . . . 8 ( 0 (le‘𝐾)𝑧 → (𝑥 = 0𝑥(le‘𝐾)𝑧))
2825, 27syl6 35 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → (𝑥 = 0𝑥(le‘𝐾)𝑧)))
2928com23 86 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 0 → (𝑧 ∈ (Base‘𝐾) → 𝑥(le‘𝐾)𝑧)))
3029ralrimdv 3109 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 0 → ∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧))
3122, 30impbid 215 . . . 4 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑥(le‘𝐾)𝑧𝑥 = 0 ))
3216, 31bitr3id 288 . . 3 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ((∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ 𝑥 = 0 ))
3310, 32riota5 7200 . 2 (𝐾 ∈ OP → (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) = 0 )
348, 33eqtrd 2777 1 (𝐾 ∈ OP → ( 1 ‘∅) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wss 3866  c0 4237   class class class wbr 5053  cfv 6380  crio 7169  Basecbs 16760  lecple 16809  lubclub 17816  0.cp0 17929  OPcops 36923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-proset 17802  df-poset 17820  df-lub 17852  df-glb 17853  df-p0 17931  df-oposet 36927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator