Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(BaseβπΎ) =
(BaseβπΎ) |
2 | | eqid 2732 |
. . 3
β’
(leβπΎ) =
(leβπΎ) |
3 | | lub0.u |
. . 3
β’ 1 =
(lubβπΎ) |
4 | | biid 260 |
. . 3
β’
((βπ¦ β
β
π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§)) β (βπ¦ β β
π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§))) |
5 | | id 22 |
. . 3
β’ (πΎ β OP β πΎ β OP) |
6 | | 0ss 4395 |
. . . 4
β’ β
β (BaseβπΎ) |
7 | 6 | a1i 11 |
. . 3
β’ (πΎ β OP β β
β (BaseβπΎ)) |
8 | 1, 2, 3, 4, 5, 7 | lubval 18305 |
. 2
β’ (πΎ β OP β ( 1
ββ
) = (β©π₯ β (BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§)))) |
9 | | lub0.z |
. . . 4
β’ 0 =
(0.βπΎ) |
10 | 1, 9 | op0cl 38042 |
. . 3
β’ (πΎ β OP β 0 β
(BaseβπΎ)) |
11 | | ral0 4511 |
. . . . . . 7
β’
βπ¦ β
β
π¦(leβπΎ)π§ |
12 | 11 | a1bi 362 |
. . . . . 6
β’ (π₯(leβπΎ)π§ β (βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§)) |
13 | 12 | ralbii 3093 |
. . . . 5
β’
(βπ§ β
(BaseβπΎ)π₯(leβπΎ)π§ β βπ§ β (BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§)) |
14 | | ral0 4511 |
. . . . . 6
β’
βπ¦ β
β
π¦(leβπΎ)π₯ |
15 | 14 | biantrur 531 |
. . . . 5
β’
(βπ§ β
(BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§) β (βπ¦ β β
π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§))) |
16 | 13, 15 | bitri 274 |
. . . 4
β’
(βπ§ β
(BaseβπΎ)π₯(leβπΎ)π§ β (βπ¦ β β
π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§))) |
17 | 10 | adantr 481 |
. . . . . . 7
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β 0 β (BaseβπΎ)) |
18 | | breq2 5151 |
. . . . . . . 8
β’ (π§ = 0 β (π₯(leβπΎ)π§ β π₯(leβπΎ) 0 )) |
19 | 18 | rspcv 3608 |
. . . . . . 7
β’ ( 0 β
(BaseβπΎ) β
(βπ§ β
(BaseβπΎ)π₯(leβπΎ)π§ β π₯(leβπΎ) 0 )) |
20 | 17, 19 | syl 17 |
. . . . . 6
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β (βπ§ β (BaseβπΎ)π₯(leβπΎ)π§ β π₯(leβπΎ) 0 )) |
21 | 1, 2, 9 | ople0 38045 |
. . . . . 6
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β (π₯(leβπΎ) 0 β π₯ = 0 )) |
22 | 20, 21 | sylibd 238 |
. . . . 5
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β (βπ§ β (BaseβπΎ)π₯(leβπΎ)π§ β π₯ = 0 )) |
23 | 1, 2, 9 | op0le 38044 |
. . . . . . . . . 10
β’ ((πΎ β OP β§ π§ β (BaseβπΎ)) β 0 (leβπΎ)π§) |
24 | 23 | adantlr 713 |
. . . . . . . . 9
β’ (((πΎ β OP β§ π₯ β (BaseβπΎ)) β§ π§ β (BaseβπΎ)) β 0 (leβπΎ)π§) |
25 | 24 | ex 413 |
. . . . . . . 8
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β (π§ β (BaseβπΎ) β 0 (leβπΎ)π§)) |
26 | | breq1 5150 |
. . . . . . . . 9
β’ (π₯ = 0 β (π₯(leβπΎ)π§ β 0 (leβπΎ)π§)) |
27 | 26 | biimprcd 249 |
. . . . . . . 8
β’ ( 0
(leβπΎ)π§ β (π₯ = 0 β π₯(leβπΎ)π§)) |
28 | 25, 27 | syl6 35 |
. . . . . . 7
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β (π§ β (BaseβπΎ) β (π₯ = 0 β π₯(leβπΎ)π§))) |
29 | 28 | com23 86 |
. . . . . 6
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β (π₯ = 0 β (π§ β (BaseβπΎ) β π₯(leβπΎ)π§))) |
30 | 29 | ralrimdv 3152 |
. . . . 5
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β (π₯ = 0 β βπ§ β (BaseβπΎ)π₯(leβπΎ)π§)) |
31 | 22, 30 | impbid 211 |
. . . 4
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β (βπ§ β (BaseβπΎ)π₯(leβπΎ)π§ β π₯ = 0 )) |
32 | 16, 31 | bitr3id 284 |
. . 3
β’ ((πΎ β OP β§ π₯ β (BaseβπΎ)) β ((βπ¦ β β
π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§)) β π₯ = 0 )) |
33 | 10, 32 | riota5 7391 |
. 2
β’ (πΎ β OP β
(β©π₯ β
(BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β β
π¦(leβπΎ)π§ β π₯(leβπΎ)π§))) = 0 ) |
34 | 8, 33 | eqtrd 2772 |
1
β’ (πΎ β OP β ( 1
ββ
) = 0 ) |