![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abelthlem7a | Structured version Visualization version GIF version |
Description: Lemma for abelth 25960. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
abelth.1 | β’ (π β π΄:β0βΆβ) |
abelth.2 | β’ (π β seq0( + , π΄) β dom β ) |
abelth.3 | β’ (π β π β β) |
abelth.4 | β’ (π β 0 β€ π) |
abelth.5 | β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} |
abelth.6 | β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) |
abelth.7 | β’ (π β seq0( + , π΄) β 0) |
abelthlem6.1 | β’ (π β π β (π β {1})) |
Ref | Expression |
---|---|
abelthlem7a | β’ (π β (π β β β§ (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abelthlem6.1 | . . 3 β’ (π β π β (π β {1})) | |
2 | 1 | eldifad 3960 | . 2 β’ (π β π β π) |
3 | oveq2 7419 | . . . . 5 β’ (π§ = π β (1 β π§) = (1 β π)) | |
4 | 3 | fveq2d 6895 | . . . 4 β’ (π§ = π β (absβ(1 β π§)) = (absβ(1 β π))) |
5 | fveq2 6891 | . . . . . 6 β’ (π§ = π β (absβπ§) = (absβπ)) | |
6 | 5 | oveq2d 7427 | . . . . 5 β’ (π§ = π β (1 β (absβπ§)) = (1 β (absβπ))) |
7 | 6 | oveq2d 7427 | . . . 4 β’ (π§ = π β (π Β· (1 β (absβπ§))) = (π Β· (1 β (absβπ)))) |
8 | 4, 7 | breq12d 5161 | . . 3 β’ (π§ = π β ((absβ(1 β π§)) β€ (π Β· (1 β (absβπ§))) β (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) |
9 | abelth.5 | . . 3 β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} | |
10 | 8, 9 | elrab2 3686 | . 2 β’ (π β π β (π β β β§ (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) |
11 | 2, 10 | sylib 217 | 1 β’ (π β (π β β β§ (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 β cdif 3945 {csn 4628 class class class wbr 5148 β¦ cmpt 5231 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7411 βcc 11110 βcr 11111 0cc0 11112 1c1 11113 + caddc 11115 Β· cmul 11117 β€ cle 11251 β cmin 11446 β0cn0 12474 seqcseq 13968 βcexp 14029 abscabs 15183 β cli 15430 Ξ£csu 15634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7414 |
This theorem is referenced by: abelthlem7 25957 |
Copyright terms: Public domain | W3C validator |