MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem7a Structured version   Visualization version   GIF version

Theorem abelthlem7a 26354
Description: Lemma for abelth 26358. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
abelthlem6.1 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
Assertion
Ref Expression
abelthlem7a (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋)))))
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝑛,𝑋,𝑥,𝑧   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem7a
StepHypRef Expression
1 abelthlem6.1 . . 3 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
21eldifad 3929 . 2 (𝜑𝑋𝑆)
3 oveq2 7398 . . . . 5 (𝑧 = 𝑋 → (1 − 𝑧) = (1 − 𝑋))
43fveq2d 6865 . . . 4 (𝑧 = 𝑋 → (abs‘(1 − 𝑧)) = (abs‘(1 − 𝑋)))
5 fveq2 6861 . . . . . 6 (𝑧 = 𝑋 → (abs‘𝑧) = (abs‘𝑋))
65oveq2d 7406 . . . . 5 (𝑧 = 𝑋 → (1 − (abs‘𝑧)) = (1 − (abs‘𝑋)))
76oveq2d 7406 . . . 4 (𝑧 = 𝑋 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · (1 − (abs‘𝑋))))
84, 7breq12d 5123 . . 3 (𝑧 = 𝑋 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋)))))
9 abelth.5 . . 3 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
108, 9elrab2 3665 . 2 (𝑋𝑆 ↔ (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋)))))
112, 10sylib 218 1 (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  cdif 3914  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  0cn0 12449  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  abelthlem7  26355
  Copyright terms: Public domain W3C validator