| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abelthlem7a | Structured version Visualization version GIF version | ||
| Description: Lemma for abelth 26373. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
| abelth.3 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| abelth.4 | ⊢ (𝜑 → 0 ≤ 𝑀) |
| abelth.5 | ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
| abelth.6 | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| abelth.7 | ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) |
| abelthlem6.1 | ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) |
| Ref | Expression |
|---|---|
| abelthlem7a | ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelthlem6.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) | |
| 2 | 1 | eldifad 3909 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 3 | oveq2 7349 | . . . . 5 ⊢ (𝑧 = 𝑋 → (1 − 𝑧) = (1 − 𝑋)) | |
| 4 | 3 | fveq2d 6821 | . . . 4 ⊢ (𝑧 = 𝑋 → (abs‘(1 − 𝑧)) = (abs‘(1 − 𝑋))) |
| 5 | fveq2 6817 | . . . . . 6 ⊢ (𝑧 = 𝑋 → (abs‘𝑧) = (abs‘𝑋)) | |
| 6 | 5 | oveq2d 7357 | . . . . 5 ⊢ (𝑧 = 𝑋 → (1 − (abs‘𝑧)) = (1 − (abs‘𝑋))) |
| 7 | 6 | oveq2d 7357 | . . . 4 ⊢ (𝑧 = 𝑋 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · (1 − (abs‘𝑋)))) |
| 8 | 4, 7 | breq12d 5099 | . . 3 ⊢ (𝑧 = 𝑋 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
| 9 | abelth.5 | . . 3 ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | |
| 10 | 8, 9 | elrab2 3645 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
| 11 | 2, 10 | sylib 218 | 1 ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 {csn 4571 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 ≤ cle 11142 − cmin 11339 ℕ0cn0 12376 seqcseq 13903 ↑cexp 13963 abscabs 15136 ⇝ cli 15386 Σcsu 15588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: abelthlem7 26370 |
| Copyright terms: Public domain | W3C validator |