![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abelthlem7a | Structured version Visualization version GIF version |
Description: Lemma for abelth 25953. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
abelth.1 | β’ (π β π΄:β0βΆβ) |
abelth.2 | β’ (π β seq0( + , π΄) β dom β ) |
abelth.3 | β’ (π β π β β) |
abelth.4 | β’ (π β 0 β€ π) |
abelth.5 | β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} |
abelth.6 | β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) |
abelth.7 | β’ (π β seq0( + , π΄) β 0) |
abelthlem6.1 | β’ (π β π β (π β {1})) |
Ref | Expression |
---|---|
abelthlem7a | β’ (π β (π β β β§ (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abelthlem6.1 | . . 3 β’ (π β π β (π β {1})) | |
2 | 1 | eldifad 3961 | . 2 β’ (π β π β π) |
3 | oveq2 7417 | . . . . 5 β’ (π§ = π β (1 β π§) = (1 β π)) | |
4 | 3 | fveq2d 6896 | . . . 4 β’ (π§ = π β (absβ(1 β π§)) = (absβ(1 β π))) |
5 | fveq2 6892 | . . . . . 6 β’ (π§ = π β (absβπ§) = (absβπ)) | |
6 | 5 | oveq2d 7425 | . . . . 5 β’ (π§ = π β (1 β (absβπ§)) = (1 β (absβπ))) |
7 | 6 | oveq2d 7425 | . . . 4 β’ (π§ = π β (π Β· (1 β (absβπ§))) = (π Β· (1 β (absβπ)))) |
8 | 4, 7 | breq12d 5162 | . . 3 β’ (π§ = π β ((absβ(1 β π§)) β€ (π Β· (1 β (absβπ§))) β (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) |
9 | abelth.5 | . . 3 β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} | |
10 | 8, 9 | elrab2 3687 | . 2 β’ (π β π β (π β β β§ (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) |
11 | 2, 10 | sylib 217 | 1 β’ (π β (π β β β§ (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 {crab 3433 β cdif 3946 {csn 4629 class class class wbr 5149 β¦ cmpt 5232 dom cdm 5677 βΆwf 6540 βcfv 6544 (class class class)co 7409 βcc 11108 βcr 11109 0cc0 11110 1c1 11111 + caddc 11113 Β· cmul 11115 β€ cle 11249 β cmin 11444 β0cn0 12472 seqcseq 13966 βcexp 14027 abscabs 15181 β cli 15428 Ξ£csu 15632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 |
This theorem is referenced by: abelthlem7 25950 |
Copyright terms: Public domain | W3C validator |