MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem7a Structured version   Visualization version   GIF version

Theorem abelthlem7a 25949
Description: Lemma for abelth 25953. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
abelth.1 (πœ‘ β†’ 𝐴:β„•0βŸΆβ„‚)
abelth.2 (πœ‘ β†’ seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (πœ‘ β†’ 𝑀 ∈ ℝ)
abelth.4 (πœ‘ β†’ 0 ≀ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ β„‚ ∣ (absβ€˜(1 βˆ’ 𝑧)) ≀ (𝑀 Β· (1 βˆ’ (absβ€˜π‘§)))}
abelth.6 𝐹 = (π‘₯ ∈ 𝑆 ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛)))
abelth.7 (πœ‘ β†’ seq0( + , 𝐴) ⇝ 0)
abelthlem6.1 (πœ‘ β†’ 𝑋 ∈ (𝑆 βˆ– {1}))
Assertion
Ref Expression
abelthlem7a (πœ‘ β†’ (𝑋 ∈ β„‚ ∧ (absβ€˜(1 βˆ’ 𝑋)) ≀ (𝑀 Β· (1 βˆ’ (absβ€˜π‘‹)))))
Distinct variable groups:   π‘₯,𝑛,𝑧,𝑀   𝑛,𝑋,π‘₯,𝑧   𝐴,𝑛,π‘₯,𝑧   πœ‘,𝑛,π‘₯   𝑆,𝑛,π‘₯
Allowed substitution hints:   πœ‘(𝑧)   𝑆(𝑧)   𝐹(π‘₯,𝑧,𝑛)

Proof of Theorem abelthlem7a
StepHypRef Expression
1 abelthlem6.1 . . 3 (πœ‘ β†’ 𝑋 ∈ (𝑆 βˆ– {1}))
21eldifad 3961 . 2 (πœ‘ β†’ 𝑋 ∈ 𝑆)
3 oveq2 7417 . . . . 5 (𝑧 = 𝑋 β†’ (1 βˆ’ 𝑧) = (1 βˆ’ 𝑋))
43fveq2d 6896 . . . 4 (𝑧 = 𝑋 β†’ (absβ€˜(1 βˆ’ 𝑧)) = (absβ€˜(1 βˆ’ 𝑋)))
5 fveq2 6892 . . . . . 6 (𝑧 = 𝑋 β†’ (absβ€˜π‘§) = (absβ€˜π‘‹))
65oveq2d 7425 . . . . 5 (𝑧 = 𝑋 β†’ (1 βˆ’ (absβ€˜π‘§)) = (1 βˆ’ (absβ€˜π‘‹)))
76oveq2d 7425 . . . 4 (𝑧 = 𝑋 β†’ (𝑀 Β· (1 βˆ’ (absβ€˜π‘§))) = (𝑀 Β· (1 βˆ’ (absβ€˜π‘‹))))
84, 7breq12d 5162 . . 3 (𝑧 = 𝑋 β†’ ((absβ€˜(1 βˆ’ 𝑧)) ≀ (𝑀 Β· (1 βˆ’ (absβ€˜π‘§))) ↔ (absβ€˜(1 βˆ’ 𝑋)) ≀ (𝑀 Β· (1 βˆ’ (absβ€˜π‘‹)))))
9 abelth.5 . . 3 𝑆 = {𝑧 ∈ β„‚ ∣ (absβ€˜(1 βˆ’ 𝑧)) ≀ (𝑀 Β· (1 βˆ’ (absβ€˜π‘§)))}
108, 9elrab2 3687 . 2 (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ β„‚ ∧ (absβ€˜(1 βˆ’ 𝑋)) ≀ (𝑀 Β· (1 βˆ’ (absβ€˜π‘‹)))))
112, 10sylib 217 1 (πœ‘ β†’ (𝑋 ∈ β„‚ ∧ (absβ€˜(1 βˆ’ 𝑋)) ≀ (𝑀 Β· (1 βˆ’ (absβ€˜π‘‹)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {crab 3433   βˆ– cdif 3946  {csn 4629   class class class wbr 5149   ↦ cmpt 5232  dom cdm 5677  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108  β„cr 11109  0cc0 11110  1c1 11111   + caddc 11113   Β· cmul 11115   ≀ cle 11249   βˆ’ cmin 11444  β„•0cn0 12472  seqcseq 13966  β†‘cexp 14027  abscabs 15181   ⇝ cli 15428  Ξ£csu 15632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412
This theorem is referenced by:  abelthlem7  25950
  Copyright terms: Public domain W3C validator