| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abelthlem7a | Structured version Visualization version GIF version | ||
| Description: Lemma for abelth 26351. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
| abelth.3 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| abelth.4 | ⊢ (𝜑 → 0 ≤ 𝑀) |
| abelth.5 | ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
| abelth.6 | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| abelth.7 | ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) |
| abelthlem6.1 | ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) |
| Ref | Expression |
|---|---|
| abelthlem7a | ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelthlem6.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) | |
| 2 | 1 | eldifad 3926 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 3 | oveq2 7395 | . . . . 5 ⊢ (𝑧 = 𝑋 → (1 − 𝑧) = (1 − 𝑋)) | |
| 4 | 3 | fveq2d 6862 | . . . 4 ⊢ (𝑧 = 𝑋 → (abs‘(1 − 𝑧)) = (abs‘(1 − 𝑋))) |
| 5 | fveq2 6858 | . . . . . 6 ⊢ (𝑧 = 𝑋 → (abs‘𝑧) = (abs‘𝑋)) | |
| 6 | 5 | oveq2d 7403 | . . . . 5 ⊢ (𝑧 = 𝑋 → (1 − (abs‘𝑧)) = (1 − (abs‘𝑋))) |
| 7 | 6 | oveq2d 7403 | . . . 4 ⊢ (𝑧 = 𝑋 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · (1 − (abs‘𝑋)))) |
| 8 | 4, 7 | breq12d 5120 | . . 3 ⊢ (𝑧 = 𝑋 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
| 9 | abelth.5 | . . 3 ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | |
| 10 | 8, 9 | elrab2 3662 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
| 11 | 2, 10 | sylib 218 | 1 ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 {csn 4589 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 ≤ cle 11209 − cmin 11405 ℕ0cn0 12442 seqcseq 13966 ↑cexp 14026 abscabs 15200 ⇝ cli 15450 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: abelthlem7 26348 |
| Copyright terms: Public domain | W3C validator |