Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abelthlem7a | Structured version Visualization version GIF version |
Description: Lemma for abelth 25581. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
abelth.3 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
abelth.4 | ⊢ (𝜑 → 0 ≤ 𝑀) |
abelth.5 | ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
abelth.6 | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
abelth.7 | ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) |
abelthlem6.1 | ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) |
Ref | Expression |
---|---|
abelthlem7a | ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abelthlem6.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) | |
2 | 1 | eldifad 3903 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
3 | oveq2 7276 | . . . . 5 ⊢ (𝑧 = 𝑋 → (1 − 𝑧) = (1 − 𝑋)) | |
4 | 3 | fveq2d 6772 | . . . 4 ⊢ (𝑧 = 𝑋 → (abs‘(1 − 𝑧)) = (abs‘(1 − 𝑋))) |
5 | fveq2 6768 | . . . . . 6 ⊢ (𝑧 = 𝑋 → (abs‘𝑧) = (abs‘𝑋)) | |
6 | 5 | oveq2d 7284 | . . . . 5 ⊢ (𝑧 = 𝑋 → (1 − (abs‘𝑧)) = (1 − (abs‘𝑋))) |
7 | 6 | oveq2d 7284 | . . . 4 ⊢ (𝑧 = 𝑋 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · (1 − (abs‘𝑋)))) |
8 | 4, 7 | breq12d 5091 | . . 3 ⊢ (𝑧 = 𝑋 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
9 | abelth.5 | . . 3 ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | |
10 | 8, 9 | elrab2 3628 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
11 | 2, 10 | sylib 217 | 1 ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {crab 3069 ∖ cdif 3888 {csn 4566 class class class wbr 5078 ↦ cmpt 5161 dom cdm 5588 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 ℝcr 10854 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 ≤ cle 10994 − cmin 11188 ℕ0cn0 12216 seqcseq 13702 ↑cexp 13763 abscabs 14926 ⇝ cli 15174 Σcsu 15378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 |
This theorem is referenced by: abelthlem7 25578 |
Copyright terms: Public domain | W3C validator |