Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abelthlem7a | Structured version Visualization version GIF version |
Description: Lemma for abelth 25610. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
abelth.3 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
abelth.4 | ⊢ (𝜑 → 0 ≤ 𝑀) |
abelth.5 | ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
abelth.6 | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
abelth.7 | ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) |
abelthlem6.1 | ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) |
Ref | Expression |
---|---|
abelthlem7a | ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abelthlem6.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) | |
2 | 1 | eldifad 3898 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
3 | oveq2 7275 | . . . . 5 ⊢ (𝑧 = 𝑋 → (1 − 𝑧) = (1 − 𝑋)) | |
4 | 3 | fveq2d 6770 | . . . 4 ⊢ (𝑧 = 𝑋 → (abs‘(1 − 𝑧)) = (abs‘(1 − 𝑋))) |
5 | fveq2 6766 | . . . . . 6 ⊢ (𝑧 = 𝑋 → (abs‘𝑧) = (abs‘𝑋)) | |
6 | 5 | oveq2d 7283 | . . . . 5 ⊢ (𝑧 = 𝑋 → (1 − (abs‘𝑧)) = (1 − (abs‘𝑋))) |
7 | 6 | oveq2d 7283 | . . . 4 ⊢ (𝑧 = 𝑋 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · (1 − (abs‘𝑋)))) |
8 | 4, 7 | breq12d 5086 | . . 3 ⊢ (𝑧 = 𝑋 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
9 | abelth.5 | . . 3 ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | |
10 | 8, 9 | elrab2 3626 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
11 | 2, 10 | sylib 217 | 1 ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ∖ cdif 3883 {csn 4561 class class class wbr 5073 ↦ cmpt 5156 dom cdm 5584 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 ℂcc 10879 ℝcr 10880 0cc0 10881 1c1 10882 + caddc 10884 · cmul 10886 ≤ cle 11020 − cmin 11215 ℕ0cn0 12243 seqcseq 13731 ↑cexp 13792 abscabs 14955 ⇝ cli 15203 Σcsu 15407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-iota 6384 df-fv 6434 df-ov 7270 |
This theorem is referenced by: abelthlem7 25607 |
Copyright terms: Public domain | W3C validator |