Step | Hyp | Ref
| Expression |
1 | | abelthlem6.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) |
2 | 1 | eldifad 3872 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
3 | | oveq1 7163 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥↑𝑛) = (𝑋↑𝑛)) |
4 | 3 | oveq2d 7172 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑛) · (𝑋↑𝑛))) |
5 | 4 | sumeq2sdv 15122 |
. . . 4
⊢ (𝑥 = 𝑋 → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑋↑𝑛))) |
6 | | abelth.6 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
7 | | sumex 15105 |
. . . 4
⊢
Σ𝑛 ∈
ℕ0 ((𝐴‘𝑛) · (𝑋↑𝑛)) ∈ V |
8 | 5, 6, 7 | fvmpt 6764 |
. . 3
⊢ (𝑋 ∈ 𝑆 → (𝐹‘𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑋↑𝑛))) |
9 | 2, 8 | syl 17 |
. 2
⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑋↑𝑛))) |
10 | | nn0uz 12333 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
11 | | 0zd 12045 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
12 | | fveq2 6663 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝐴‘𝑘) = (𝐴‘𝑛)) |
13 | | oveq2 7164 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝑋↑𝑘) = (𝑋↑𝑛)) |
14 | 12, 13 | oveq12d 7174 |
. . . . 5
⊢ (𝑘 = 𝑛 → ((𝐴‘𝑘) · (𝑋↑𝑘)) = ((𝐴‘𝑛) · (𝑋↑𝑛))) |
15 | | eqid 2758 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑋↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑋↑𝑘))) |
16 | | ovex 7189 |
. . . . 5
⊢ ((𝐴‘𝑛) · (𝑋↑𝑛)) ∈ V |
17 | 14, 15, 16 | fvmpt 6764 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑋↑𝑘)))‘𝑛) = ((𝐴‘𝑛) · (𝑋↑𝑛))) |
18 | 17 | adantl 485 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑋↑𝑘)))‘𝑛) = ((𝐴‘𝑛) · (𝑋↑𝑛))) |
19 | | abelth.1 |
. . . . 5
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
20 | 19 | ffvelrnda 6848 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
21 | | abelth.5 |
. . . . . . 7
⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 −
𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
22 | 21 | ssrab3 3988 |
. . . . . 6
⊢ 𝑆 ⊆
ℂ |
23 | 22, 2 | sseldi 3892 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ ℂ) |
24 | | expcl 13510 |
. . . . 5
⊢ ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (𝑋↑𝑛) ∈
ℂ) |
25 | 23, 24 | sylan 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑋↑𝑛) ∈ ℂ) |
26 | 20, 25 | mulcld 10712 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑋↑𝑛)) ∈ ℂ) |
27 | | fveq2 6663 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑛)) |
28 | 27, 13 | oveq12d 7174 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)) = ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
29 | | eqid 2758 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘))) |
30 | | ovex 7189 |
. . . . . . . 8
⊢ ((seq0( +
, 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ V |
31 | 28, 29, 30 | fvmpt 6764 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
32 | 31 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
33 | 10, 11, 20 | serf 13461 |
. . . . . . . 8
⊢ (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ) |
34 | 33 | ffvelrnda 6848 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (seq0( +
, 𝐴)‘𝑛) ∈
ℂ) |
35 | 34, 25 | mulcld 10712 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((seq0( +
, 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ ℂ) |
36 | | abelth.2 |
. . . . . . . . . 10
⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝
) |
37 | | abelth.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℝ) |
38 | | abelth.4 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝑀) |
39 | 19, 36, 37, 38, 21 | abelthlem2 25139 |
. . . . . . . . 9
⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1))) |
40 | 39 | simprd 499 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1)) |
41 | 40, 1 | sseldd 3895 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) |
42 | | abelth.7 |
. . . . . . . 8
⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) |
43 | 19, 36, 37, 38, 21, 6, 42 | abelthlem5 25142 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , (𝑘
∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) |
44 | 41, 43 | mpdan 686 |
. . . . . 6
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) |
45 | 10, 11, 32, 35, 44 | isumclim2 15174 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
46 | | seqex 13433 |
. . . . . 6
⊢ seq0( + ,
(𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑋↑𝑘)))) ∈ V |
47 | 46 | a1i 11 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑋↑𝑘)))) ∈ V) |
48 | | 0nn0 11962 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
49 | 48 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℕ0) |
50 | | oveq1 7163 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1)) |
51 | 50 | oveq2d 7172 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (0...(𝑘 − 1)) = (0...(𝑖 − 1))) |
52 | 51 | sumeq1d 15119 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) = Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴‘𝑚)) |
53 | | oveq2 7164 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → (𝑋↑𝑘) = (𝑋↑𝑖)) |
54 | 52, 53 | oveq12d 7174 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴‘𝑚) · (𝑋↑𝑖))) |
55 | | eqid 2758 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))) = (𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))) |
56 | | ovex 7189 |
. . . . . . . . . 10
⊢
(Σ𝑚 ∈
(0...(𝑖 − 1))(𝐴‘𝑚) · (𝑋↑𝑖)) ∈ V |
57 | 54, 55, 56 | fvmpt 6764 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴‘𝑚) · (𝑋↑𝑖))) |
58 | 57 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴‘𝑚) · (𝑋↑𝑖))) |
59 | | fzfid 13403 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(0...(𝑖 − 1)) ∈
Fin) |
60 | 19 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ) |
61 | | elfznn0 13062 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (0...(𝑖 − 1)) → 𝑚 ∈ ℕ0) |
62 | | ffvelrn 6846 |
. . . . . . . . . . 11
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑚 ∈
ℕ0) → (𝐴‘𝑚) ∈ ℂ) |
63 | 60, 61, 62 | syl2an 598 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑖 − 1))) → (𝐴‘𝑚) ∈ ℂ) |
64 | 59, 63 | fsumcl 15151 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴‘𝑚) ∈ ℂ) |
65 | | expcl 13510 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0)
→ (𝑋↑𝑖) ∈
ℂ) |
66 | 23, 65 | sylan 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑋↑𝑖) ∈ ℂ) |
67 | 64, 66 | mulcld 10712 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(Σ𝑚 ∈
(0...(𝑖 − 1))(𝐴‘𝑚) · (𝑋↑𝑖)) ∈ ℂ) |
68 | 58, 67 | eqeltrd 2852 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑖) ∈ ℂ) |
69 | 11 | peano2zd 12142 |
. . . . . . . . 9
⊢ (𝜑 → (0 + 1) ∈
ℤ) |
70 | | nnuz 12334 |
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) |
71 | | 1e0p1 12192 |
. . . . . . . . . . . . 13
⊢ 1 = (0 +
1) |
72 | 71 | fveq2i 6666 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘1) = (ℤ≥‘(0 +
1)) |
73 | 70, 72 | eqtri 2781 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘(0 + 1)) |
74 | 73 | eleq2i 2843 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘(0 + 1))) |
75 | | nnm1nn0 11988 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
76 | 75 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈
ℕ0) |
77 | | fveq2 6663 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 − 1) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘(𝑛 − 1))) |
78 | | oveq2 7164 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 − 1) → (𝑋↑𝑘) = (𝑋↑(𝑛 − 1))) |
79 | 77, 78 | oveq12d 7174 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑛 − 1) → ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) |
80 | 79 | oveq2d 7172 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 − 1) → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1))))) |
81 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
↦ (𝑋 · ((seq0(
+ , 𝐴)‘𝑘) · (𝑋↑𝑘)))) = (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) |
82 | | ovex 7189 |
. . . . . . . . . . . . 13
⊢ (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) ∈ V |
83 | 80, 81, 82 | fvmpt 6764 |
. . . . . . . . . . . 12
⊢ ((𝑛 − 1) ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1))))) |
84 | 76, 83 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1))))) |
85 | | ax-1cn 10646 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
86 | | nncn 11695 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
87 | 86 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
88 | | nn0ex 11953 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
89 | 88 | mptex 6983 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
↦ (𝑋 · ((seq0(
+ , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ V |
90 | 89 | shftval 14494 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝑛
∈ ℂ) → (((𝑘
∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘(𝑛 − 1))) |
91 | 85, 87, 90 | sylancr 590 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘(𝑛 − 1))) |
92 | | eqidd 2759 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴‘𝑚) = (𝐴‘𝑚)) |
93 | 76, 10 | eleqtrdi 2862 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈
(ℤ≥‘0)) |
94 | 19 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴:ℕ0⟶ℂ) |
95 | | elfznn0 13062 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℕ0) |
96 | 94, 95, 62 | syl2an 598 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴‘𝑚) ∈ ℂ) |
97 | 92, 93, 96 | fsumser 15148 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) = (seq0( + , 𝐴)‘(𝑛 − 1))) |
98 | | expm1t 13520 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (𝑋↑𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋)) |
99 | 23, 98 | sylan 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋↑𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋)) |
100 | 23 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ ℂ) |
101 | | expcl 13510 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ ℂ ∧ (𝑛 − 1) ∈
ℕ0) → (𝑋↑(𝑛 − 1)) ∈ ℂ) |
102 | 23, 75, 101 | syl2an 598 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋↑(𝑛 − 1)) ∈ ℂ) |
103 | 100, 102 | mulcomd 10713 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋 · (𝑋↑(𝑛 − 1))) = ((𝑋↑(𝑛 − 1)) · 𝑋)) |
104 | 99, 103 | eqtr4d 2796 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋↑𝑛) = (𝑋 · (𝑋↑(𝑛 − 1)))) |
105 | 97, 104 | oveq12d 7174 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1))))) |
106 | | nnnn0 11954 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
107 | 106 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
108 | | oveq1 7163 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1)) |
109 | 108 | oveq2d 7172 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → (0...(𝑘 − 1)) = (0...(𝑛 − 1))) |
110 | 109 | sumeq1d 15119 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) = Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚)) |
111 | 110, 13 | oveq12d 7174 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛))) |
112 | | ovex 7189 |
. . . . . . . . . . . . . 14
⊢
(Σ𝑚 ∈
(0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛)) ∈ V |
113 | 111, 55, 112 | fvmpt 6764 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛))) |
114 | 107, 113 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛))) |
115 | | ffvelrn 6846 |
. . . . . . . . . . . . . 14
⊢ ((seq0( +
, 𝐴):ℕ0⟶ℂ ∧
(𝑛 − 1) ∈
ℕ0) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ) |
116 | 33, 75, 115 | syl2an 598 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ) |
117 | 100, 116,
102 | mul12d 10900 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1))))) |
118 | 105, 114,
117 | 3eqtr4d 2803 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1))))) |
119 | 84, 91, 118 | 3eqtr4d 2803 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛)) |
120 | 74, 119 | sylan2br 597 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(0 +
1))) → (((𝑘 ∈
ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛)) |
121 | 69, 120 | seqfeq 13458 |
. . . . . . . 8
⊢ (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0
↦ (𝑋 · ((seq0(
+ , 𝐴)‘𝑘) · (𝑋↑𝑘)))) shift 1)) = seq(0 + 1)( + , (𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))) |
122 | | fveq2 6663 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖)) |
123 | 122, 53 | oveq12d 7174 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) |
124 | | ovex 7189 |
. . . . . . . . . . . . 13
⊢ ((seq0( +
, 𝐴)‘𝑖) · (𝑋↑𝑖)) ∈ V |
125 | 123, 29, 124 | fvmpt 6764 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) |
126 | 125 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) |
127 | 33 | ffvelrnda 6848 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (seq0( +
, 𝐴)‘𝑖) ∈
ℂ) |
128 | 127, 66 | mulcld 10712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((seq0( +
, 𝐴)‘𝑖) · (𝑋↑𝑖)) ∈ ℂ) |
129 | 126, 128 | eqeltrd 2852 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖) ∈ ℂ) |
130 | 123 | oveq2d 7172 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖)))) |
131 | | ovex 7189 |
. . . . . . . . . . . . 13
⊢ (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖))) ∈ V |
132 | 130, 81, 131 | fvmpt 6764 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖)))) |
133 | 132 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (𝑋 · ((seq0(
+ , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖)))) |
134 | 126 | oveq2d 7172 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖)) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋↑𝑖)))) |
135 | 133, 134 | eqtr4d 2796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (𝑋 · ((seq0(
+ , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑖) = (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑖))) |
136 | 10, 11, 23, 45, 129, 135 | isermulc2 15075 |
. . . . . . . . 9
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ (𝑋 · ((seq0(
+ , 𝐴)‘𝑘) · (𝑋↑𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
137 | | 0z 12044 |
. . . . . . . . . 10
⊢ 0 ∈
ℤ |
138 | | 1z 12064 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
139 | 89 | isershft 15081 |
. . . . . . . . . 10
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0
↦ (𝑋 · ((seq0(
+ , 𝐴)‘𝑘) · (𝑋↑𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
140 | 137, 138,
139 | mp2an 691 |
. . . . . . . . 9
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0
↦ (𝑋 · ((seq0(
+ , 𝐴)‘𝑘) · (𝑋↑𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
141 | 136, 140 | sylib 221 |
. . . . . . . 8
⊢ (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0
↦ (𝑋 · ((seq0(
+ , 𝐴)‘𝑘) · (𝑋↑𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
142 | 121, 141 | eqbrtrrd 5060 |
. . . . . . 7
⊢ (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
143 | 10, 49, 68, 142 | clim2ser2 15073 |
. . . . . 6
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))) ⇝ ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))‘0))) |
144 | | seq1 13444 |
. . . . . . . . . . 11
⊢ (0 ∈
ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘0)) |
145 | 137, 144 | ax-mp 5 |
. . . . . . . . . 10
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘0) |
146 | | oveq1 7163 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑘 − 1) = (0 − 1)) |
147 | 146 | oveq2d 7172 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (0...(𝑘 − 1)) = (0...(0 −
1))) |
148 | | risefall0lem 15441 |
. . . . . . . . . . . . . . . 16
⊢ (0...(0
− 1)) = ∅ |
149 | 147, 148 | eqtrdi 2809 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (0...(𝑘 − 1)) =
∅) |
150 | 149 | sumeq1d 15119 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) = Σ𝑚 ∈ ∅ (𝐴‘𝑚)) |
151 | | sum0 15139 |
. . . . . . . . . . . . . 14
⊢
Σ𝑚 ∈
∅ (𝐴‘𝑚) = 0 |
152 | 150, 151 | eqtrdi 2809 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) = 0) |
153 | | oveq2 7164 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (𝑋↑𝑘) = (𝑋↑0)) |
154 | 152, 153 | oveq12d 7174 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)) = (0 · (𝑋↑0))) |
155 | | ovex 7189 |
. . . . . . . . . . . 12
⊢ (0
· (𝑋↑0)) ∈
V |
156 | 154, 55, 155 | fvmpt 6764 |
. . . . . . . . . . 11
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘0) = (0 · (𝑋↑0))) |
157 | 48, 156 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘0) = (0 · (𝑋↑0)) |
158 | 145, 157 | eqtri 2781 |
. . . . . . . . 9
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))‘0) = (0 · (𝑋↑0)) |
159 | | expcl 13510 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℂ ∧ 0 ∈
ℕ0) → (𝑋↑0) ∈ ℂ) |
160 | 23, 48, 159 | sylancl 589 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋↑0) ∈ ℂ) |
161 | 160 | mul02d 10889 |
. . . . . . . . 9
⊢ (𝜑 → (0 · (𝑋↑0)) = 0) |
162 | 158, 161 | syl5eq 2805 |
. . . . . . . 8
⊢ (𝜑 → (seq0( + , (𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))‘0) = 0) |
163 | 162 | oveq2d 7172 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))‘0)) = ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) + 0)) |
164 | 10, 11, 32, 35, 44 | isumcl 15177 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ ℂ) |
165 | 23, 164 | mulcld 10712 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℂ) |
166 | 165 | addid1d 10891 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) + 0) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
167 | 163, 166 | eqtrd 2793 |
. . . . . 6
⊢ (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))‘0)) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
168 | 143, 167 | breqtrd 5062 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
169 | 10, 11, 129 | serf 13461 |
. . . . . 6
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))):ℕ0⟶ℂ) |
170 | 169 | ffvelrnda 6848 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (seq0( +
, (𝑘 ∈
ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑖) ∈ ℂ) |
171 | 10, 11, 68 | serf 13461 |
. . . . . 6
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))):ℕ0⟶ℂ) |
172 | 171 | ffvelrnda 6848 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (seq0( +
, (𝑘 ∈
ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))‘𝑖) ∈ ℂ) |
173 | | simpr 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
174 | 173, 10 | eleqtrdi 2862 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
(ℤ≥‘0)) |
175 | | simpl 486 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝜑) |
176 | | elfznn0 13062 |
. . . . . . 7
⊢ (𝑛 ∈ (0...𝑖) → 𝑛 ∈ ℕ0) |
177 | 32, 35 | eqeltrd 2852 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) ∈ ℂ) |
178 | 175, 176,
177 | syl2an 598 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) ∈ ℂ) |
179 | 113 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛))) |
180 | | fzfid 13403 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(0...(𝑛 − 1)) ∈
Fin) |
181 | 19 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ) |
182 | 181, 95, 62 | syl2an 598 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴‘𝑚) ∈ ℂ) |
183 | 180, 182 | fsumcl 15151 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) ∈ ℂ) |
184 | 183, 25 | mulcld 10712 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(Σ𝑚 ∈
(0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛)) ∈ ℂ) |
185 | 179, 184 | eqeltrd 2852 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛) ∈ ℂ) |
186 | 175, 176,
185 | syl2an 598 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛) ∈ ℂ) |
187 | | eqidd 2759 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴‘𝑚) = (𝐴‘𝑚)) |
188 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
189 | 188, 10 | eleqtrdi 2862 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
(ℤ≥‘0)) |
190 | | elfznn0 13062 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (0...𝑛) → 𝑚 ∈ ℕ0) |
191 | 181, 190,
62 | syl2an 598 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴‘𝑚) ∈ ℂ) |
192 | 187, 189,
191 | fsumser 15148 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
Σ𝑚 ∈ (0...𝑛)(𝐴‘𝑚) = (seq0( + , 𝐴)‘𝑛)) |
193 | | fveq2 6663 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (𝐴‘𝑚) = (𝐴‘𝑛)) |
194 | 189, 191,
193 | fsumm1 15167 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
Σ𝑚 ∈ (0...𝑛)(𝐴‘𝑚) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) + (𝐴‘𝑛))) |
195 | 192, 194 | eqtr3d 2795 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (seq0( +
, 𝐴)‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) + (𝐴‘𝑛))) |
196 | 195 | oveq1d 7171 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((seq0( +
, 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚)) = ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) + (𝐴‘𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚))) |
197 | 183, 20 | pncan2d 11050 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((Σ𝑚 ∈
(0...(𝑛 − 1))(𝐴‘𝑚) + (𝐴‘𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚)) = (𝐴‘𝑛)) |
198 | 196, 197 | eqtr2d 2794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) = ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚))) |
199 | 198 | oveq1d 7171 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑋↑𝑛)) = (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚)) · (𝑋↑𝑛))) |
200 | 34, 183, 25 | subdird 11148 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((seq0(
+ , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚)) · (𝑋↑𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛)))) |
201 | 199, 200 | eqtrd 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑋↑𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛)))) |
202 | 32, 179 | oveq12d 7174 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴‘𝑚) · (𝑋↑𝑛)))) |
203 | 201, 18, 202 | 3eqtr4d 2803 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑋↑𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛))) |
204 | 175, 176,
203 | syl2an 598 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑋↑𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘)))‘𝑛))) |
205 | 174, 178,
186, 204 | sersub 13476 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (seq0( +
, (𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑋↑𝑘))))‘𝑖) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑖) − (seq0( + , (𝑘 ∈ ℕ0 ↦
(Σ𝑚 ∈
(0...(𝑘 − 1))(𝐴‘𝑚) · (𝑋↑𝑘))))‘𝑖))) |
206 | 10, 11, 45, 47, 168, 170, 172, 205 | climsub 15051 |
. . . 4
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑋↑𝑘)))) ⇝ (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
207 | | 1cnd 10687 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
208 | 207, 23, 164 | subdird 11148 |
. . . . 5
⊢ (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0
((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) = ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
209 | 164 | mulid2d 10710 |
. . . . . 6
⊢ (𝜑 → (1 · Σ𝑛 ∈ ℕ0
((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) = Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
210 | 209 | oveq1d 7171 |
. . . . 5
⊢ (𝜑 → ((1 · Σ𝑛 ∈ ℕ0
((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
211 | 208, 210 | eqtrd 2793 |
. . . 4
⊢ (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0
((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
212 | 206, 211 | breqtrrd 5064 |
. . 3
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑋↑𝑘)))) ⇝ ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
213 | 10, 11, 18, 26, 212 | isumclim 15173 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑋↑𝑛)) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
214 | 9, 213 | eqtrd 2793 |
1
⊢ (𝜑 → (𝐹‘𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |