MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem6 Structured version   Visualization version   GIF version

Theorem abelthlem6 26353
Description: Lemma for abelth 26358. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
abelthlem6.1 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
Assertion
Ref Expression
abelthlem6 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝑛,𝑋,𝑥,𝑧   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem6
Dummy variables 𝑖 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelthlem6.1 . . . 4 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
21eldifad 3929 . . 3 (𝜑𝑋𝑆)
3 oveq1 7397 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
43oveq2d 7406 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · (𝑋𝑛)))
54sumeq2sdv 15676 . . . 4 (𝑥 = 𝑋 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
6 abelth.6 . . . 4 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
7 sumex 15661 . . . 4 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
85, 6, 7fvmpt 6971 . . 3 (𝑋𝑆 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
92, 8syl 17 . 2 (𝜑 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
10 nn0uz 12842 . . 3 0 = (ℤ‘0)
11 0zd 12548 . . 3 (𝜑 → 0 ∈ ℤ)
12 fveq2 6861 . . . . . 6 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
13 oveq2 7398 . . . . . 6 (𝑘 = 𝑛 → (𝑋𝑘) = (𝑋𝑛))
1412, 13oveq12d 7408 . . . . 5 (𝑘 = 𝑛 → ((𝐴𝑘) · (𝑋𝑘)) = ((𝐴𝑛) · (𝑋𝑛)))
15 eqid 2730 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))
16 ovex 7423 . . . . 5 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
1714, 15, 16fvmpt 6971 . . . 4 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
1817adantl 481 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
19 abelth.1 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
2019ffvelcdmda 7059 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
21 abelth.5 . . . . . . 7 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
2221ssrab3 4048 . . . . . 6 𝑆 ⊆ ℂ
2322, 2sselid 3947 . . . . 5 (𝜑𝑋 ∈ ℂ)
24 expcl 14051 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2523, 24sylan 580 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2620, 25mulcld 11201 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) ∈ ℂ)
27 fveq2 6861 . . . . . . . . 9 (𝑘 = 𝑛 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑛))
2827, 13oveq12d 7408 . . . . . . . 8 (𝑘 = 𝑛 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
29 eqid 2730 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
30 ovex 7423 . . . . . . . 8 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ V
3128, 29, 30fvmpt 6971 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3231adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3310, 11, 20serf 14002 . . . . . . . 8 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3433ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) ∈ ℂ)
3534, 25mulcld 11201 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
36 abelth.2 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
37 abelth.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
38 abelth.4 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑀)
3919, 36, 37, 38, 21abelthlem2 26349 . . . . . . . . 9 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
4039simprd 495 . . . . . . . 8 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
4140, 1sseldd 3950 . . . . . . 7 (𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1))
42 abelth.7 . . . . . . . 8 (𝜑 → seq0( + , 𝐴) ⇝ 0)
4319, 36, 37, 38, 21, 6, 42abelthlem5 26352 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4441, 43mpdan 687 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4510, 11, 32, 35, 44isumclim2 15731 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
46 seqex 13975 . . . . . 6 seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V
4746a1i 11 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V)
48 0nn0 12464 . . . . . . . 8 0 ∈ ℕ0
4948a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
50 oveq1 7397 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1))
5150oveq2d 7406 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (0...(𝑘 − 1)) = (0...(𝑖 − 1)))
5251sumeq1d 15673 . . . . . . . . . . 11 (𝑘 = 𝑖 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚))
53 oveq2 7398 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
5452, 53oveq12d 7408 . . . . . . . . . 10 (𝑘 = 𝑖 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
55 eqid 2730 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))
56 ovex 7423 . . . . . . . . . 10 𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ V
5754, 55, 56fvmpt 6971 . . . . . . . . 9 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
5857adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
59 fzfid 13945 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (0...(𝑖 − 1)) ∈ Fin)
6019adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
61 elfznn0 13588 . . . . . . . . . . 11 (𝑚 ∈ (0...(𝑖 − 1)) → 𝑚 ∈ ℕ0)
62 ffvelcdm 7056 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
6360, 61, 62syl2an 596 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑖 − 1))) → (𝐴𝑚) ∈ ℂ)
6459, 63fsumcl 15706 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) ∈ ℂ)
65 expcl 14051 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6623, 65sylan 580 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6764, 66mulcld 11201 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ ℂ)
6858, 67eqeltrd 2829 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
6911peano2zd 12648 . . . . . . . . 9 (𝜑 → (0 + 1) ∈ ℤ)
70 nnuz 12843 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
71 1e0p1 12698 . . . . . . . . . . . . 13 1 = (0 + 1)
7271fveq2i 6864 . . . . . . . . . . . 12 (ℤ‘1) = (ℤ‘(0 + 1))
7370, 72eqtri 2753 . . . . . . . . . . 11 ℕ = (ℤ‘(0 + 1))
7473eleq2i 2821 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘(0 + 1)))
75 nnm1nn0 12490 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
7675adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
77 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘(𝑛 − 1)))
78 oveq2 7398 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (𝑋𝑘) = (𝑋↑(𝑛 − 1)))
7977, 78oveq12d 7408 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 − 1) → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1))))
8079oveq2d 7406 . . . . . . . . . . . . 13 (𝑘 = (𝑛 − 1) → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
81 eqid 2730 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) = (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))
82 ovex 7423 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) ∈ V
8380, 81, 82fvmpt 6971 . . . . . . . . . . . 12 ((𝑛 − 1) ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
8476, 83syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
85 ax-1cn 11133 . . . . . . . . . . . 12 1 ∈ ℂ
86 nncn 12201 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
8786adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
88 nn0ex 12455 . . . . . . . . . . . . . 14 0 ∈ V
8988mptex 7200 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ V
9089shftval 15047 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
9185, 87, 90sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
92 eqidd 2731 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) = (𝐴𝑚))
9376, 10eleqtrdi 2839 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ (ℤ‘0))
9419adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
95 elfznn0 13588 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℕ0)
9694, 95, 62syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
9792, 93, 96fsumser 15703 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) = (seq0( + , 𝐴)‘(𝑛 − 1)))
98 expm1t 14062 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
9923, 98sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10023adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℂ)
101 expcl 14051 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
10223, 75, 101syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
103100, 102mulcomd 11202 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋 · (𝑋↑(𝑛 − 1))) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10499, 103eqtr4d 2768 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = (𝑋 · (𝑋↑(𝑛 − 1))))
10597, 104oveq12d 7408 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
106 nnnn0 12456 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
107106adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
108 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
109108oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (0...(𝑘 − 1)) = (0...(𝑛 − 1)))
110109sumeq1d 15673 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚))
111110, 13oveq12d 7408 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
112 ovex 7423 . . . . . . . . . . . . . 14 𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ V
113111, 55, 112fvmpt 6971 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
114107, 113syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
115 ffvelcdm 7056 . . . . . . . . . . . . . 14 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
11633, 75, 115syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
117100, 116, 102mul12d 11390 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
118105, 114, 1173eqtr4d 2775 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
11984, 91, 1183eqtr4d 2775 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12074, 119sylan2br 595 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(0 + 1))) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12169, 120seqfeq 13999 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) = seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))))
122 fveq2 6861 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
123122, 53oveq12d 7408 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
124 ovex 7423 . . . . . . . . . . . . 13 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
125123, 29, 124fvmpt 6971 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
126125adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
12733ffvelcdmda 7059 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
128127, 66mulcld 11201 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
129126, 128eqeltrd 2829 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
130123oveq2d 7406 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
131 ovex 7423 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ∈ V
132130, 81, 131fvmpt 6971 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
133132adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
134126oveq2d 7406 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
135133, 134eqtr4d 2768 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)))
13610, 11, 23, 45, 129, 135isermulc2 15631 . . . . . . . . 9 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
137 0z 12547 . . . . . . . . . 10 0 ∈ ℤ
138 1z 12570 . . . . . . . . . 10 1 ∈ ℤ
13989isershft 15637 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
140137, 138, 139mp2an 692 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
141136, 140sylib 218 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
142121, 141eqbrtrrd 5134 . . . . . . 7 (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
14310, 49, 68, 142clim2ser2 15629 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)))
144 seq1 13986 . . . . . . . . . . 11 (0 ∈ ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0))
145137, 144ax-mp 5 . . . . . . . . . 10 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0)
146 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
147146oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (0...(𝑘 − 1)) = (0...(0 − 1)))
148 risefall0lem 15999 . . . . . . . . . . . . . . . 16 (0...(0 − 1)) = ∅
149147, 148eqtrdi 2781 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (0...(𝑘 − 1)) = ∅)
150149sumeq1d 15673 . . . . . . . . . . . . . 14 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ ∅ (𝐴𝑚))
151 sum0 15694 . . . . . . . . . . . . . 14 Σ𝑚 ∈ ∅ (𝐴𝑚) = 0
152150, 151eqtrdi 2781 . . . . . . . . . . . . 13 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = 0)
153 oveq2 7398 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑋𝑘) = (𝑋↑0))
154152, 153oveq12d 7408 . . . . . . . . . . . 12 (𝑘 = 0 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (0 · (𝑋↑0)))
155 ovex 7423 . . . . . . . . . . . 12 (0 · (𝑋↑0)) ∈ V
156154, 55, 155fvmpt 6971 . . . . . . . . . . 11 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0)))
15748, 156ax-mp 5 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0))
158145, 157eqtri 2753 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = (0 · (𝑋↑0))
159 expcl 14051 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝑋↑0) ∈ ℂ)
16023, 48, 159sylancl 586 . . . . . . . . . 10 (𝜑 → (𝑋↑0) ∈ ℂ)
161160mul02d 11379 . . . . . . . . 9 (𝜑 → (0 · (𝑋↑0)) = 0)
162158, 161eqtrid 2777 . . . . . . . 8 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = 0)
163162oveq2d 7406 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0))
16410, 11, 32, 35, 44isumcl 15734 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
16523, 164mulcld 11201 . . . . . . . 8 (𝜑 → (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℂ)
166165addridd 11381 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
167163, 166eqtrd 2765 . . . . . 6 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
168143, 167breqtrd 5136 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
16910, 11, 129serf 14002 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))):ℕ0⟶ℂ)
170169ffvelcdmda 7059 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
17110, 11, 68serf 14002 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))):ℕ0⟶ℂ)
172171ffvelcdmda 7059 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
173 simpr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
174173, 10eleqtrdi 2839 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
175 simpl 482 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝜑)
176 elfznn0 13588 . . . . . . 7 (𝑛 ∈ (0...𝑖) → 𝑛 ∈ ℕ0)
17732, 35eqeltrd 2829 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
178175, 176, 177syl2an 596 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
179113adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
180 fzfid 13945 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (0...(𝑛 − 1)) ∈ Fin)
18119adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
182181, 95, 62syl2an 596 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
183180, 182fsumcl 15706 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) ∈ ℂ)
184183, 25mulcld 11201 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ ℂ)
185179, 184eqeltrd 2829 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
186175, 176, 185syl2an 596 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
187 eqidd 2731 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) = (𝐴𝑚))
188 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
189188, 10eleqtrdi 2839 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
190 elfznn0 13588 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...𝑛) → 𝑚 ∈ ℕ0)
191181, 190, 62syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) ∈ ℂ)
192187, 189, 191fsumser 15703 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (seq0( + , 𝐴)‘𝑛))
193 fveq2 6861 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
194189, 191, 193fsumm1 15724 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
195192, 194eqtr3d 2767 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
196195oveq1d 7405 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
197183, 20pncan2d 11542 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = (𝐴𝑛))
198196, 197eqtr2d 2766 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
199198oveq1d 7405 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)))
20034, 183, 25subdird 11642 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
201199, 200eqtrd 2765 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
20232, 179oveq12d 7408 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
203201, 18, 2023eqtr4d 2775 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
204175, 176, 203syl2an 596 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
205174, 178, 186, 204sersub 14017 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))))‘𝑖) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) − (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖)))
20610, 11, 45, 47, 168, 170, 172, 205climsub 15607 . . . 4 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
207 1cnd 11176 . . . . . 6 (𝜑 → 1 ∈ ℂ)
208207, 23, 164subdird 11642 . . . . 5 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
209164mullidd 11199 . . . . . 6 (𝜑 → (1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
210209oveq1d 7405 . . . . 5 (𝜑 → ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
211208, 210eqtrd 2765 . . . 4 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
212206, 211breqtrrd 5138 . . 3 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
21310, 11, 18, 26, 212isumclim 15730 . 2 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
2149, 213eqtrd 2765 1 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  cn 12193  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  cexp 14033   shift cshi 15039  abscabs 15207  cli 15457  Σcsu 15659  ballcbl 21258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266
This theorem is referenced by:  abelthlem7  26355
  Copyright terms: Public domain W3C validator