MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem6 Structured version   Visualization version   GIF version

Theorem abelthlem6 26362
Description: Lemma for abelth 26367. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
abelthlem6.1 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
Assertion
Ref Expression
abelthlem6 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝑛,𝑋,𝑥,𝑧   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem6
Dummy variables 𝑖 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelthlem6.1 . . . 4 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
21eldifad 3917 . . 3 (𝜑𝑋𝑆)
3 oveq1 7360 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
43oveq2d 7369 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · (𝑋𝑛)))
54sumeq2sdv 15628 . . . 4 (𝑥 = 𝑋 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
6 abelth.6 . . . 4 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
7 sumex 15613 . . . 4 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
85, 6, 7fvmpt 6934 . . 3 (𝑋𝑆 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
92, 8syl 17 . 2 (𝜑 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
10 nn0uz 12795 . . 3 0 = (ℤ‘0)
11 0zd 12501 . . 3 (𝜑 → 0 ∈ ℤ)
12 fveq2 6826 . . . . . 6 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
13 oveq2 7361 . . . . . 6 (𝑘 = 𝑛 → (𝑋𝑘) = (𝑋𝑛))
1412, 13oveq12d 7371 . . . . 5 (𝑘 = 𝑛 → ((𝐴𝑘) · (𝑋𝑘)) = ((𝐴𝑛) · (𝑋𝑛)))
15 eqid 2729 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))
16 ovex 7386 . . . . 5 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
1714, 15, 16fvmpt 6934 . . . 4 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
1817adantl 481 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
19 abelth.1 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
2019ffvelcdmda 7022 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
21 abelth.5 . . . . . . 7 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
2221ssrab3 4035 . . . . . 6 𝑆 ⊆ ℂ
2322, 2sselid 3935 . . . . 5 (𝜑𝑋 ∈ ℂ)
24 expcl 14004 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2523, 24sylan 580 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2620, 25mulcld 11154 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) ∈ ℂ)
27 fveq2 6826 . . . . . . . . 9 (𝑘 = 𝑛 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑛))
2827, 13oveq12d 7371 . . . . . . . 8 (𝑘 = 𝑛 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
29 eqid 2729 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
30 ovex 7386 . . . . . . . 8 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ V
3128, 29, 30fvmpt 6934 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3231adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3310, 11, 20serf 13955 . . . . . . . 8 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3433ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) ∈ ℂ)
3534, 25mulcld 11154 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
36 abelth.2 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
37 abelth.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
38 abelth.4 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑀)
3919, 36, 37, 38, 21abelthlem2 26358 . . . . . . . . 9 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
4039simprd 495 . . . . . . . 8 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
4140, 1sseldd 3938 . . . . . . 7 (𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1))
42 abelth.7 . . . . . . . 8 (𝜑 → seq0( + , 𝐴) ⇝ 0)
4319, 36, 37, 38, 21, 6, 42abelthlem5 26361 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4441, 43mpdan 687 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4510, 11, 32, 35, 44isumclim2 15683 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
46 seqex 13928 . . . . . 6 seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V
4746a1i 11 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V)
48 0nn0 12417 . . . . . . . 8 0 ∈ ℕ0
4948a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
50 oveq1 7360 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1))
5150oveq2d 7369 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (0...(𝑘 − 1)) = (0...(𝑖 − 1)))
5251sumeq1d 15625 . . . . . . . . . . 11 (𝑘 = 𝑖 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚))
53 oveq2 7361 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
5452, 53oveq12d 7371 . . . . . . . . . 10 (𝑘 = 𝑖 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
55 eqid 2729 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))
56 ovex 7386 . . . . . . . . . 10 𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ V
5754, 55, 56fvmpt 6934 . . . . . . . . 9 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
5857adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
59 fzfid 13898 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (0...(𝑖 − 1)) ∈ Fin)
6019adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
61 elfznn0 13541 . . . . . . . . . . 11 (𝑚 ∈ (0...(𝑖 − 1)) → 𝑚 ∈ ℕ0)
62 ffvelcdm 7019 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
6360, 61, 62syl2an 596 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑖 − 1))) → (𝐴𝑚) ∈ ℂ)
6459, 63fsumcl 15658 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) ∈ ℂ)
65 expcl 14004 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6623, 65sylan 580 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6764, 66mulcld 11154 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ ℂ)
6858, 67eqeltrd 2828 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
6911peano2zd 12601 . . . . . . . . 9 (𝜑 → (0 + 1) ∈ ℤ)
70 nnuz 12796 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
71 1e0p1 12651 . . . . . . . . . . . . 13 1 = (0 + 1)
7271fveq2i 6829 . . . . . . . . . . . 12 (ℤ‘1) = (ℤ‘(0 + 1))
7370, 72eqtri 2752 . . . . . . . . . . 11 ℕ = (ℤ‘(0 + 1))
7473eleq2i 2820 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘(0 + 1)))
75 nnm1nn0 12443 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
7675adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
77 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘(𝑛 − 1)))
78 oveq2 7361 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (𝑋𝑘) = (𝑋↑(𝑛 − 1)))
7977, 78oveq12d 7371 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 − 1) → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1))))
8079oveq2d 7369 . . . . . . . . . . . . 13 (𝑘 = (𝑛 − 1) → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
81 eqid 2729 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) = (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))
82 ovex 7386 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) ∈ V
8380, 81, 82fvmpt 6934 . . . . . . . . . . . 12 ((𝑛 − 1) ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
8476, 83syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
85 ax-1cn 11086 . . . . . . . . . . . 12 1 ∈ ℂ
86 nncn 12154 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
8786adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
88 nn0ex 12408 . . . . . . . . . . . . . 14 0 ∈ V
8988mptex 7163 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ V
9089shftval 14999 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
9185, 87, 90sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
92 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) = (𝐴𝑚))
9376, 10eleqtrdi 2838 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ (ℤ‘0))
9419adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
95 elfznn0 13541 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℕ0)
9694, 95, 62syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
9792, 93, 96fsumser 15655 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) = (seq0( + , 𝐴)‘(𝑛 − 1)))
98 expm1t 14015 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
9923, 98sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10023adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℂ)
101 expcl 14004 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
10223, 75, 101syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
103100, 102mulcomd 11155 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋 · (𝑋↑(𝑛 − 1))) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10499, 103eqtr4d 2767 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = (𝑋 · (𝑋↑(𝑛 − 1))))
10597, 104oveq12d 7371 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
106 nnnn0 12409 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
107106adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
108 oveq1 7360 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
109108oveq2d 7369 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (0...(𝑘 − 1)) = (0...(𝑛 − 1)))
110109sumeq1d 15625 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚))
111110, 13oveq12d 7371 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
112 ovex 7386 . . . . . . . . . . . . . 14 𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ V
113111, 55, 112fvmpt 6934 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
114107, 113syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
115 ffvelcdm 7019 . . . . . . . . . . . . . 14 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
11633, 75, 115syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
117100, 116, 102mul12d 11343 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
118105, 114, 1173eqtr4d 2774 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
11984, 91, 1183eqtr4d 2774 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12074, 119sylan2br 595 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(0 + 1))) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12169, 120seqfeq 13952 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) = seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))))
122 fveq2 6826 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
123122, 53oveq12d 7371 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
124 ovex 7386 . . . . . . . . . . . . 13 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
125123, 29, 124fvmpt 6934 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
126125adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
12733ffvelcdmda 7022 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
128127, 66mulcld 11154 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
129126, 128eqeltrd 2828 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
130123oveq2d 7369 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
131 ovex 7386 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ∈ V
132130, 81, 131fvmpt 6934 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
133132adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
134126oveq2d 7369 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
135133, 134eqtr4d 2767 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)))
13610, 11, 23, 45, 129, 135isermulc2 15583 . . . . . . . . 9 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
137 0z 12500 . . . . . . . . . 10 0 ∈ ℤ
138 1z 12523 . . . . . . . . . 10 1 ∈ ℤ
13989isershft 15589 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
140137, 138, 139mp2an 692 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
141136, 140sylib 218 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
142121, 141eqbrtrrd 5119 . . . . . . 7 (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
14310, 49, 68, 142clim2ser2 15581 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)))
144 seq1 13939 . . . . . . . . . . 11 (0 ∈ ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0))
145137, 144ax-mp 5 . . . . . . . . . 10 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0)
146 oveq1 7360 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
147146oveq2d 7369 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (0...(𝑘 − 1)) = (0...(0 − 1)))
148 risefall0lem 15951 . . . . . . . . . . . . . . . 16 (0...(0 − 1)) = ∅
149147, 148eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (0...(𝑘 − 1)) = ∅)
150149sumeq1d 15625 . . . . . . . . . . . . . 14 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ ∅ (𝐴𝑚))
151 sum0 15646 . . . . . . . . . . . . . 14 Σ𝑚 ∈ ∅ (𝐴𝑚) = 0
152150, 151eqtrdi 2780 . . . . . . . . . . . . 13 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = 0)
153 oveq2 7361 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑋𝑘) = (𝑋↑0))
154152, 153oveq12d 7371 . . . . . . . . . . . 12 (𝑘 = 0 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (0 · (𝑋↑0)))
155 ovex 7386 . . . . . . . . . . . 12 (0 · (𝑋↑0)) ∈ V
156154, 55, 155fvmpt 6934 . . . . . . . . . . 11 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0)))
15748, 156ax-mp 5 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0))
158145, 157eqtri 2752 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = (0 · (𝑋↑0))
159 expcl 14004 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝑋↑0) ∈ ℂ)
16023, 48, 159sylancl 586 . . . . . . . . . 10 (𝜑 → (𝑋↑0) ∈ ℂ)
161160mul02d 11332 . . . . . . . . 9 (𝜑 → (0 · (𝑋↑0)) = 0)
162158, 161eqtrid 2776 . . . . . . . 8 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = 0)
163162oveq2d 7369 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0))
16410, 11, 32, 35, 44isumcl 15686 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
16523, 164mulcld 11154 . . . . . . . 8 (𝜑 → (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℂ)
166165addridd 11334 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
167163, 166eqtrd 2764 . . . . . 6 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
168143, 167breqtrd 5121 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
16910, 11, 129serf 13955 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))):ℕ0⟶ℂ)
170169ffvelcdmda 7022 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
17110, 11, 68serf 13955 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))):ℕ0⟶ℂ)
172171ffvelcdmda 7022 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
173 simpr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
174173, 10eleqtrdi 2838 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
175 simpl 482 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝜑)
176 elfznn0 13541 . . . . . . 7 (𝑛 ∈ (0...𝑖) → 𝑛 ∈ ℕ0)
17732, 35eqeltrd 2828 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
178175, 176, 177syl2an 596 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
179113adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
180 fzfid 13898 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (0...(𝑛 − 1)) ∈ Fin)
18119adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
182181, 95, 62syl2an 596 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
183180, 182fsumcl 15658 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) ∈ ℂ)
184183, 25mulcld 11154 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ ℂ)
185179, 184eqeltrd 2828 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
186175, 176, 185syl2an 596 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
187 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) = (𝐴𝑚))
188 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
189188, 10eleqtrdi 2838 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
190 elfznn0 13541 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...𝑛) → 𝑚 ∈ ℕ0)
191181, 190, 62syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) ∈ ℂ)
192187, 189, 191fsumser 15655 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (seq0( + , 𝐴)‘𝑛))
193 fveq2 6826 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
194189, 191, 193fsumm1 15676 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
195192, 194eqtr3d 2766 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
196195oveq1d 7368 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
197183, 20pncan2d 11495 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = (𝐴𝑛))
198196, 197eqtr2d 2765 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
199198oveq1d 7368 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)))
20034, 183, 25subdird 11595 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
201199, 200eqtrd 2764 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
20232, 179oveq12d 7371 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
203201, 18, 2023eqtr4d 2774 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
204175, 176, 203syl2an 596 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
205174, 178, 186, 204sersub 13970 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))))‘𝑖) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) − (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖)))
20610, 11, 45, 47, 168, 170, 172, 205climsub 15559 . . . 4 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
207 1cnd 11129 . . . . . 6 (𝜑 → 1 ∈ ℂ)
208207, 23, 164subdird 11595 . . . . 5 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
209164mullidd 11152 . . . . . 6 (𝜑 → (1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
210209oveq1d 7368 . . . . 5 (𝜑 → ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
211208, 210eqtrd 2764 . . . 4 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
212206, 211breqtrrd 5123 . . 3 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
21310, 11, 18, 26, 212isumclim 15682 . 2 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
2149, 213eqtrd 2764 1 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  cdif 3902  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cmpt 5176  dom cdm 5623  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cmin 11365  cn 12146  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  seqcseq 13926  cexp 13986   shift cshi 14991  abscabs 15159  cli 15409  Σcsu 15611  ballcbl 21266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-xadd 13033  df-ico 13272  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274
This theorem is referenced by:  abelthlem7  26364
  Copyright terms: Public domain W3C validator