MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem6 Structured version   Visualization version   GIF version

Theorem abelthlem6 25795
Description: Lemma for abelth 25800. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
abelthlem6.1 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
Assertion
Ref Expression
abelthlem6 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝑛,𝑋,𝑥,𝑧   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem6
Dummy variables 𝑖 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelthlem6.1 . . . 4 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
21eldifad 3922 . . 3 (𝜑𝑋𝑆)
3 oveq1 7364 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
43oveq2d 7373 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · (𝑋𝑛)))
54sumeq2sdv 15589 . . . 4 (𝑥 = 𝑋 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
6 abelth.6 . . . 4 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
7 sumex 15572 . . . 4 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
85, 6, 7fvmpt 6948 . . 3 (𝑋𝑆 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
92, 8syl 17 . 2 (𝜑 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
10 nn0uz 12805 . . 3 0 = (ℤ‘0)
11 0zd 12511 . . 3 (𝜑 → 0 ∈ ℤ)
12 fveq2 6842 . . . . . 6 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
13 oveq2 7365 . . . . . 6 (𝑘 = 𝑛 → (𝑋𝑘) = (𝑋𝑛))
1412, 13oveq12d 7375 . . . . 5 (𝑘 = 𝑛 → ((𝐴𝑘) · (𝑋𝑘)) = ((𝐴𝑛) · (𝑋𝑛)))
15 eqid 2736 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))
16 ovex 7390 . . . . 5 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
1714, 15, 16fvmpt 6948 . . . 4 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
1817adantl 482 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
19 abelth.1 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
2019ffvelcdmda 7035 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
21 abelth.5 . . . . . . 7 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
2221ssrab3 4040 . . . . . 6 𝑆 ⊆ ℂ
2322, 2sselid 3942 . . . . 5 (𝜑𝑋 ∈ ℂ)
24 expcl 13985 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2523, 24sylan 580 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2620, 25mulcld 11175 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) ∈ ℂ)
27 fveq2 6842 . . . . . . . . 9 (𝑘 = 𝑛 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑛))
2827, 13oveq12d 7375 . . . . . . . 8 (𝑘 = 𝑛 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
29 eqid 2736 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
30 ovex 7390 . . . . . . . 8 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ V
3128, 29, 30fvmpt 6948 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3231adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3310, 11, 20serf 13936 . . . . . . . 8 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3433ffvelcdmda 7035 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) ∈ ℂ)
3534, 25mulcld 11175 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
36 abelth.2 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
37 abelth.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
38 abelth.4 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑀)
3919, 36, 37, 38, 21abelthlem2 25791 . . . . . . . . 9 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
4039simprd 496 . . . . . . . 8 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
4140, 1sseldd 3945 . . . . . . 7 (𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1))
42 abelth.7 . . . . . . . 8 (𝜑 → seq0( + , 𝐴) ⇝ 0)
4319, 36, 37, 38, 21, 6, 42abelthlem5 25794 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4441, 43mpdan 685 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4510, 11, 32, 35, 44isumclim2 15643 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
46 seqex 13908 . . . . . 6 seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V
4746a1i 11 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V)
48 0nn0 12428 . . . . . . . 8 0 ∈ ℕ0
4948a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
50 oveq1 7364 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1))
5150oveq2d 7373 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (0...(𝑘 − 1)) = (0...(𝑖 − 1)))
5251sumeq1d 15586 . . . . . . . . . . 11 (𝑘 = 𝑖 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚))
53 oveq2 7365 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
5452, 53oveq12d 7375 . . . . . . . . . 10 (𝑘 = 𝑖 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
55 eqid 2736 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))
56 ovex 7390 . . . . . . . . . 10 𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ V
5754, 55, 56fvmpt 6948 . . . . . . . . 9 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
5857adantl 482 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
59 fzfid 13878 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (0...(𝑖 − 1)) ∈ Fin)
6019adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
61 elfznn0 13534 . . . . . . . . . . 11 (𝑚 ∈ (0...(𝑖 − 1)) → 𝑚 ∈ ℕ0)
62 ffvelcdm 7032 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
6360, 61, 62syl2an 596 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑖 − 1))) → (𝐴𝑚) ∈ ℂ)
6459, 63fsumcl 15618 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) ∈ ℂ)
65 expcl 13985 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6623, 65sylan 580 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6764, 66mulcld 11175 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ ℂ)
6858, 67eqeltrd 2838 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
6911peano2zd 12610 . . . . . . . . 9 (𝜑 → (0 + 1) ∈ ℤ)
70 nnuz 12806 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
71 1e0p1 12660 . . . . . . . . . . . . 13 1 = (0 + 1)
7271fveq2i 6845 . . . . . . . . . . . 12 (ℤ‘1) = (ℤ‘(0 + 1))
7370, 72eqtri 2764 . . . . . . . . . . 11 ℕ = (ℤ‘(0 + 1))
7473eleq2i 2829 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘(0 + 1)))
75 nnm1nn0 12454 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
7675adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
77 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘(𝑛 − 1)))
78 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (𝑋𝑘) = (𝑋↑(𝑛 − 1)))
7977, 78oveq12d 7375 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 − 1) → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1))))
8079oveq2d 7373 . . . . . . . . . . . . 13 (𝑘 = (𝑛 − 1) → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
81 eqid 2736 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) = (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))
82 ovex 7390 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) ∈ V
8380, 81, 82fvmpt 6948 . . . . . . . . . . . 12 ((𝑛 − 1) ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
8476, 83syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
85 ax-1cn 11109 . . . . . . . . . . . 12 1 ∈ ℂ
86 nncn 12161 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
8786adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
88 nn0ex 12419 . . . . . . . . . . . . . 14 0 ∈ V
8988mptex 7173 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ V
9089shftval 14959 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
9185, 87, 90sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
92 eqidd 2737 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) = (𝐴𝑚))
9376, 10eleqtrdi 2848 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ (ℤ‘0))
9419adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
95 elfznn0 13534 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℕ0)
9694, 95, 62syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
9792, 93, 96fsumser 15615 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) = (seq0( + , 𝐴)‘(𝑛 − 1)))
98 expm1t 13996 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
9923, 98sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10023adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℂ)
101 expcl 13985 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
10223, 75, 101syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
103100, 102mulcomd 11176 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋 · (𝑋↑(𝑛 − 1))) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10499, 103eqtr4d 2779 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = (𝑋 · (𝑋↑(𝑛 − 1))))
10597, 104oveq12d 7375 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
106 nnnn0 12420 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
107106adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
108 oveq1 7364 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
109108oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (0...(𝑘 − 1)) = (0...(𝑛 − 1)))
110109sumeq1d 15586 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚))
111110, 13oveq12d 7375 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
112 ovex 7390 . . . . . . . . . . . . . 14 𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ V
113111, 55, 112fvmpt 6948 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
114107, 113syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
115 ffvelcdm 7032 . . . . . . . . . . . . . 14 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
11633, 75, 115syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
117100, 116, 102mul12d 11364 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
118105, 114, 1173eqtr4d 2786 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
11984, 91, 1183eqtr4d 2786 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12074, 119sylan2br 595 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(0 + 1))) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12169, 120seqfeq 13933 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) = seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))))
122 fveq2 6842 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
123122, 53oveq12d 7375 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
124 ovex 7390 . . . . . . . . . . . . 13 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
125123, 29, 124fvmpt 6948 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
126125adantl 482 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
12733ffvelcdmda 7035 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
128127, 66mulcld 11175 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
129126, 128eqeltrd 2838 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
130123oveq2d 7373 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
131 ovex 7390 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ∈ V
132130, 81, 131fvmpt 6948 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
133132adantl 482 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
134126oveq2d 7373 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
135133, 134eqtr4d 2779 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)))
13610, 11, 23, 45, 129, 135isermulc2 15542 . . . . . . . . 9 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
137 0z 12510 . . . . . . . . . 10 0 ∈ ℤ
138 1z 12533 . . . . . . . . . 10 1 ∈ ℤ
13989isershft 15548 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
140137, 138, 139mp2an 690 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
141136, 140sylib 217 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
142121, 141eqbrtrrd 5129 . . . . . . 7 (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
14310, 49, 68, 142clim2ser2 15540 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)))
144 seq1 13919 . . . . . . . . . . 11 (0 ∈ ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0))
145137, 144ax-mp 5 . . . . . . . . . 10 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0)
146 oveq1 7364 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
147146oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (0...(𝑘 − 1)) = (0...(0 − 1)))
148 risefall0lem 15909 . . . . . . . . . . . . . . . 16 (0...(0 − 1)) = ∅
149147, 148eqtrdi 2792 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (0...(𝑘 − 1)) = ∅)
150149sumeq1d 15586 . . . . . . . . . . . . . 14 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ ∅ (𝐴𝑚))
151 sum0 15606 . . . . . . . . . . . . . 14 Σ𝑚 ∈ ∅ (𝐴𝑚) = 0
152150, 151eqtrdi 2792 . . . . . . . . . . . . 13 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = 0)
153 oveq2 7365 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑋𝑘) = (𝑋↑0))
154152, 153oveq12d 7375 . . . . . . . . . . . 12 (𝑘 = 0 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (0 · (𝑋↑0)))
155 ovex 7390 . . . . . . . . . . . 12 (0 · (𝑋↑0)) ∈ V
156154, 55, 155fvmpt 6948 . . . . . . . . . . 11 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0)))
15748, 156ax-mp 5 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0))
158145, 157eqtri 2764 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = (0 · (𝑋↑0))
159 expcl 13985 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝑋↑0) ∈ ℂ)
16023, 48, 159sylancl 586 . . . . . . . . . 10 (𝜑 → (𝑋↑0) ∈ ℂ)
161160mul02d 11353 . . . . . . . . 9 (𝜑 → (0 · (𝑋↑0)) = 0)
162158, 161eqtrid 2788 . . . . . . . 8 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = 0)
163162oveq2d 7373 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0))
16410, 11, 32, 35, 44isumcl 15646 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
16523, 164mulcld 11175 . . . . . . . 8 (𝜑 → (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℂ)
166165addid1d 11355 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
167163, 166eqtrd 2776 . . . . . 6 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
168143, 167breqtrd 5131 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
16910, 11, 129serf 13936 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))):ℕ0⟶ℂ)
170169ffvelcdmda 7035 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
17110, 11, 68serf 13936 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))):ℕ0⟶ℂ)
172171ffvelcdmda 7035 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
173 simpr 485 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
174173, 10eleqtrdi 2848 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
175 simpl 483 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝜑)
176 elfznn0 13534 . . . . . . 7 (𝑛 ∈ (0...𝑖) → 𝑛 ∈ ℕ0)
17732, 35eqeltrd 2838 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
178175, 176, 177syl2an 596 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
179113adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
180 fzfid 13878 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (0...(𝑛 − 1)) ∈ Fin)
18119adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
182181, 95, 62syl2an 596 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
183180, 182fsumcl 15618 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) ∈ ℂ)
184183, 25mulcld 11175 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ ℂ)
185179, 184eqeltrd 2838 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
186175, 176, 185syl2an 596 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
187 eqidd 2737 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) = (𝐴𝑚))
188 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
189188, 10eleqtrdi 2848 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
190 elfznn0 13534 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...𝑛) → 𝑚 ∈ ℕ0)
191181, 190, 62syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) ∈ ℂ)
192187, 189, 191fsumser 15615 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (seq0( + , 𝐴)‘𝑛))
193 fveq2 6842 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
194189, 191, 193fsumm1 15636 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
195192, 194eqtr3d 2778 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
196195oveq1d 7372 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
197183, 20pncan2d 11514 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = (𝐴𝑛))
198196, 197eqtr2d 2777 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
199198oveq1d 7372 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)))
20034, 183, 25subdird 11612 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
201199, 200eqtrd 2776 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
20232, 179oveq12d 7375 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
203201, 18, 2023eqtr4d 2786 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
204175, 176, 203syl2an 596 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
205174, 178, 186, 204sersub 13951 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))))‘𝑖) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) − (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖)))
20610, 11, 45, 47, 168, 170, 172, 205climsub 15516 . . . 4 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
207 1cnd 11150 . . . . . 6 (𝜑 → 1 ∈ ℂ)
208207, 23, 164subdird 11612 . . . . 5 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
209164mulid2d 11173 . . . . . 6 (𝜑 → (1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
210209oveq1d 7372 . . . . 5 (𝜑 → ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
211208, 210eqtrd 2776 . . . 4 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
212206, 211breqtrrd 5133 . . 3 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
21310, 11, 18, 26, 212isumclim 15642 . 2 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
2149, 213eqtrd 2776 1 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  cmpt 5188  dom cdm 5633  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  cmin 11385  cn 12153  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906  cexp 13967   shift cshi 14951  abscabs 15119  cli 15366  Σcsu 15570  ballcbl 20783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-xadd 13034  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791
This theorem is referenced by:  abelthlem7  25797
  Copyright terms: Public domain W3C validator