MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelth Structured version   Visualization version   GIF version

Theorem abelth 26499
Description: Abel's theorem. If the power series Σ𝑛 ∈ ℕ0𝐴(𝑛)(𝑥𝑛) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle 𝑆 (note that the 𝑀 = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on 𝑆 ∖ {1} follows more generally from psercn 26484.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
Assertion
Ref Expression
abelth (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelth
Dummy variables 𝑗 𝑤 𝑦 𝑟 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelth.1 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
2 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
3 abelth.3 . . . 4 (𝜑𝑀 ∈ ℝ)
4 abelth.4 . . . 4 (𝜑 → 0 ≤ 𝑀)
5 abelth.5 . . . 4 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
6 abelth.6 . . . 4 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
71, 2, 3, 4, 5, 6abelthlem4 26492 . . 3 (𝜑𝐹:𝑆⟶ℂ)
81, 2, 3, 4, 5, 6abelthlem9 26498 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟))
91, 2, 3, 4, 5abelthlem2 26490 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
109simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ 𝑆)
1110ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 1 ∈ 𝑆)
12 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 𝑦𝑆)
1311, 12ovresd 7599 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) = (1(abs ∘ − )𝑦))
14 ax-1cn 11210 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
155ssrab3 4091 . . . . . . . . . . . . . . . . 17 𝑆 ⊆ ℂ
1615, 12sselid 3992 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 𝑦 ∈ ℂ)
17 eqid 2734 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) = (abs ∘ − )
1817cnmetdval 24806 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1(abs ∘ − )𝑦) = (abs‘(1 − 𝑦)))
1914, 16, 18sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (1(abs ∘ − )𝑦) = (abs‘(1 − 𝑦)))
2013, 19eqtrd 2774 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) = (abs‘(1 − 𝑦)))
2120breq1d 5157 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 ↔ (abs‘(1 − 𝑦)) < 𝑤))
227ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 𝐹:𝑆⟶ℂ)
2322, 11ffvelcdmd 7104 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (𝐹‘1) ∈ ℂ)
247adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑆⟶ℂ)
2524ffvelcdmda 7103 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (𝐹𝑦) ∈ ℂ)
2617cnmetdval 24806 . . . . . . . . . . . . . . 15 (((𝐹‘1) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) = (abs‘((𝐹‘1) − (𝐹𝑦))))
2723, 25, 26syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) = (abs‘((𝐹‘1) − (𝐹𝑦))))
2827breq1d 5157 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟 ↔ (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟))
2921, 28imbi12d 344 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟) ↔ ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟)))
3029ralbidva 3173 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (∀𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟) ↔ ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟)))
3130rexbidv 3176 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟) ↔ ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟)))
328, 31mpbird 257 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))
3332ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑟 ∈ ℝ+𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))
34 cnxmet 24808 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
35 xmetres2 24386 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
3634, 15, 35mp2an 692 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆)
37 eqid 2734 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
38 eqid 2734 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3938cnfldtopn 24817 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
40 eqid 2734 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
4137, 39, 40metrest 24552 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
4234, 15, 41mp2an 692 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
4342, 39metcnp 24569 . . . . . . . . 9 ((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ 𝑆) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑟 ∈ ℝ+𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))))
4436, 34, 10, 43mp3an12i 1464 . . . . . . . 8 (𝜑 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑟 ∈ ℝ+𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))))
457, 33, 44mpbir2and 713 . . . . . . 7 (𝜑𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1))
4645ad2antrr 726 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1))
47 simpr 484 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → 𝑦 = 1)
4847fveq2d 6910 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1))
4946, 48eleqtrrd 2841 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
50 eldifsn 4790 . . . . . . 7 (𝑦 ∈ (𝑆 ∖ {1}) ↔ (𝑦𝑆𝑦 ≠ 1))
519simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
52 abscl 15313 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (abs‘𝑤) ∈ ℝ)
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → (abs‘𝑤) ∈ ℝ)
5453a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → (abs‘𝑤) ∈ ℝ))
55 absge0 15322 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → 0 ≤ (abs‘𝑤))
5655adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → 0 ≤ (abs‘𝑤))
5756a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → 0 ≤ (abs‘𝑤)))
581, 2abelthlem1 26489 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
5958adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6053rexrd 11308 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℂ) → (abs‘𝑤) ∈ ℝ*)
61 1re 11258 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
62 rexr 11304 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℝ → 1 ∈ ℝ*)
6361, 62mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℂ) → 1 ∈ ℝ*)
64 iccssxr 13466 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0[,]+∞) ⊆ ℝ*
65 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛)))) = (𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))
66 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
6765, 1, 66radcnvcl 26474 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
6864, 67sselid 3992 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℂ) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
70 xrltletr 13195 . . . . . . . . . . . . . . . . . . . . . . 23 (((abs‘𝑤) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) → (((abs‘𝑤) < 1 ∧ 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) → (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
7160, 63, 69, 70syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → (((abs‘𝑤) < 1 ∧ 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) → (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
7259, 71mpan2d 694 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
7354, 57, 723jcad 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → ((abs‘𝑤) ∈ ℝ ∧ 0 ≤ (abs‘𝑤) ∧ (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
74 0cn 11250 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℂ
7517cnmetdval 24806 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (0(abs ∘ − )𝑤) = (abs‘(0 − 𝑤)))
7674, 75mpan 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (0(abs ∘ − )𝑤) = (abs‘(0 − 𝑤)))
77 abssub 15361 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(0 − 𝑤)) = (abs‘(𝑤 − 0)))
7874, 77mpan 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (abs‘(0 − 𝑤)) = (abs‘(𝑤 − 0)))
79 subid1 11526 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ ℂ → (𝑤 − 0) = 𝑤)
8079fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (abs‘(𝑤 − 0)) = (abs‘𝑤))
8176, 78, 803eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℂ → (0(abs ∘ − )𝑤) = (abs‘𝑤))
8281breq1d 5157 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℂ → ((0(abs ∘ − )𝑤) < 1 ↔ (abs‘𝑤) < 1))
8382adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℂ) → ((0(abs ∘ − )𝑤) < 1 ↔ (abs‘𝑤) < 1))
84 0re 11260 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ
85 elico2 13447 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) → ((abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑤) ∈ ℝ ∧ 0 ≤ (abs‘𝑤) ∧ (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
8684, 69, 85sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑤) ∈ ℝ ∧ 0 ≤ (abs‘𝑤) ∧ (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
8773, 83, 863imtr4d 294 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℂ) → ((0(abs ∘ − )𝑤) < 1 → (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
8887imdistanda 571 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑤 ∈ ℂ ∧ (0(abs ∘ − )𝑤) < 1) → (𝑤 ∈ ℂ ∧ (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))))
89 1xr 11317 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
90 elbl 24413 . . . . . . . . . . . . . . . . . . 19 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑤 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑤 ∈ ℂ ∧ (0(abs ∘ − )𝑤) < 1)))
9134, 74, 89, 90mp3an 1460 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑤 ∈ ℂ ∧ (0(abs ∘ − )𝑤) < 1))
92 absf 15372 . . . . . . . . . . . . . . . . . . 19 abs:ℂ⟶ℝ
93 ffn 6736 . . . . . . . . . . . . . . . . . . 19 (abs:ℂ⟶ℝ → abs Fn ℂ)
94 elpreima 7077 . . . . . . . . . . . . . . . . . . 19 (abs Fn ℂ → (𝑤 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑤 ∈ ℂ ∧ (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))))
9592, 93, 94mp2b 10 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑤 ∈ ℂ ∧ (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
9688, 91, 953imtr4g 296 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (0(ball‘(abs ∘ − ))1) → 𝑤 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))))
9796ssrdv 4000 . . . . . . . . . . . . . . . 16 (𝜑 → (0(ball‘(abs ∘ − ))1) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
9851, 97sstrd 4005 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 ∖ {1}) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
9998resmptd 6059 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))))
1006reseq1i 5995 . . . . . . . . . . . . . . 15 (𝐹 ↾ (𝑆 ∖ {1})) = ((𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1}))
101 difss 4145 . . . . . . . . . . . . . . . 16 (𝑆 ∖ {1}) ⊆ 𝑆
102 resmpt 6056 . . . . . . . . . . . . . . . 16 ((𝑆 ∖ {1}) ⊆ 𝑆 → ((𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))))
103101, 102ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
104100, 103eqtri 2762 . . . . . . . . . . . . . 14 (𝐹 ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
10599, 104eqtr4di 2792 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝐹 ↾ (𝑆 ∖ {1})))
106 cnvimass 6101 . . . . . . . . . . . . . . . . . . 19 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ⊆ dom abs
10792fdmi 6747 . . . . . . . . . . . . . . . . . . 19 dom abs = ℂ
108106, 107sseqtri 4031 . . . . . . . . . . . . . . . . . 18 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ⊆ ℂ
109108sseli 3990 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) → 𝑥 ∈ ℂ)
110 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
111 oveq2 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝑥𝑛) = (𝑥𝑗))
112110, 111oveq12d 7448 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑗) · (𝑥𝑗)))
113112cbvsumv 15728 . . . . . . . . . . . . . . . . . 18 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) · (𝑥𝑗))
11465pserval2 26468 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗) = ((𝐴𝑗) · (𝑥𝑗)))
115114sumeq2dv 15734 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) · (𝑥𝑗)))
116113, 115eqtr4id 2793 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗))
117109, 116syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗))
118117mpteq2ia 5250 . . . . . . . . . . . . . . 15 (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) = (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗))
119 eqid 2734 . . . . . . . . . . . . . . 15 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) = (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
120 eqid 2734 . . . . . . . . . . . . . . 15 if(sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑣) + sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑣) + 1)) = if(sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑣) + sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑣) + 1))
12165, 118, 1, 66, 119, 120psercn 26484 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ))
122 rescncf 24936 . . . . . . . . . . . . . 14 ((𝑆 ∖ {1}) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ) → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ)))
12398, 121, 122sylc 65 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ))
124105, 123eqeltrrd 2839 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ))
125124adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ))
126101, 15sstri 4004 . . . . . . . . . . . 12 (𝑆 ∖ {1}) ⊆ ℂ
127 ssid 4017 . . . . . . . . . . . 12 ℂ ⊆ ℂ
128 eqid 2734 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1}))
12938cnfldtopon 24818 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
130129toponrestid 22942 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
13138, 128, 130cncfcn 24949 . . . . . . . . . . . 12 (((𝑆 ∖ {1}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝑆 ∖ {1})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld)))
132126, 127, 131mp2an 692 . . . . . . . . . . 11 ((𝑆 ∖ {1})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld))
133125, 132eleqtrdi 2848 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld)))
134 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝑦 ∈ (𝑆 ∖ {1}))
135 resttopon 23184 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝑆 ∖ {1}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) ∈ (TopOn‘(𝑆 ∖ {1})))
136129, 126, 135mp2an 692 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) ∈ (TopOn‘(𝑆 ∖ {1}))
137136toponunii 22937 . . . . . . . . . . 11 (𝑆 ∖ {1}) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1}))
138137cncnpi 23301 . . . . . . . . . 10 (((𝐹 ↾ (𝑆 ∖ {1})) ∈ (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦))
139133, 134, 138syl2anc 584 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦))
14038cnfldtop 24819 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
141 cnex 11233 . . . . . . . . . . . . 13 ℂ ∈ V
142141, 15ssexi 5327 . . . . . . . . . . . 12 𝑆 ∈ V
143 restabs 23188 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑆 ∖ {1}) ⊆ 𝑆𝑆 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})))
144140, 101, 142, 143mp3an 1460 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1}))
145144oveq1i 7440 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))
146145fveq1i 6907 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦)
147139, 146eleqtrrdi 2849 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦))
148 resttop 23183 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
149140, 142, 148mp2an 692 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top
150149a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
151101a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝑆 ∖ {1}) ⊆ 𝑆)
15210snssd 4813 . . . . . . . . . . . . 13 (𝜑 → {1} ⊆ 𝑆)
15338cnfldhaus 24820 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Haus
154 unicntop 24821 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
155154sncld 23394 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ Haus ∧ 1 ∈ ℂ) → {1} ∈ (Clsd‘(TopOpen‘ℂfld)))
156153, 14, 155mp2an 692 . . . . . . . . . . . . . 14 {1} ∈ (Clsd‘(TopOpen‘ℂfld))
157154restcldi 23196 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ {1} ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ {1} ⊆ 𝑆) → {1} ∈ (Clsd‘((TopOpen‘ℂfld) ↾t 𝑆)))
15815, 156, 157mp3an12 1450 . . . . . . . . . . . . 13 ({1} ⊆ 𝑆 → {1} ∈ (Clsd‘((TopOpen‘ℂfld) ↾t 𝑆)))
159154restuni 23185 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
160140, 15, 159mp2an 692 . . . . . . . . . . . . . 14 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆)
161160cldopn 23054 . . . . . . . . . . . . 13 ({1} ∈ (Clsd‘((TopOpen‘ℂfld) ↾t 𝑆)) → (𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
162152, 158, 1613syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
163160isopn3 23089 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (𝑆 ∖ {1}) ⊆ 𝑆) → ((𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) = (𝑆 ∖ {1})))
164149, 101, 163mp2an 692 . . . . . . . . . . . 12 ((𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) = (𝑆 ∖ {1}))
165162, 164sylib 218 . . . . . . . . . . 11 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) = (𝑆 ∖ {1}))
166165eleq2d 2824 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) ↔ 𝑦 ∈ (𝑆 ∖ {1})))
167166biimpar 477 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})))
1687adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝐹:𝑆⟶ℂ)
169160, 154cnprest 23312 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (𝑆 ∖ {1}) ⊆ 𝑆) ∧ (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) ∧ 𝐹:𝑆⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦)))
170150, 151, 167, 168, 169syl22anc 839 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦)))
171147, 170mpbird 257 . . . . . . 7 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
17250, 171sylan2br 595 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ 1)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
173172anassrs 467 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑦 ≠ 1) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
17449, 173pm2.61dane 3026 . . . 4 ((𝜑𝑦𝑆) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
175174ralrimiva 3143 . . 3 (𝜑 → ∀𝑦𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
176 resttopon 23184 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
177129, 15, 176mp2an 692 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)
178 cncnp 23303 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑦𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))))
179177, 129, 178mp2an 692 . . 3 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑦𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦)))
1807, 175, 179sylanbrc 583 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
181 eqid 2734 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
18238, 181, 130cncfcn 24949 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
18315, 127, 182mp2an 692 . 2 (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
184180, 183eleqtrrdi 2849 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  cdif 3959  wss 3962  ifcif 4530  {csn 4630   cuni 4911   class class class wbr 5147  cmpt 5230   × cxp 5686  ccnv 5687  dom cdm 5688  cres 5690  cima 5691  ccom 5692   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  supcsup 9477  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  2c2 12318  0cn0 12523  +crp 13031  [,)cico 13385  [,]cicc 13386  seqcseq 14038  cexp 14098  abscabs 15269  cli 15516  Σcsu 15718  t crest 17466  TopOpenctopn 17467  ∞Metcxmet 21366  ballcbl 21368  MetOpencmopn 21371  fldccnfld 21381  Topctop 22914  TopOnctopon 22931  Clsdccld 23039  intcnt 23040   Cn ccn 23247   CnP ccnp 23248  Hauscha 23331  cnccncf 24915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cn 23250  df-cnp 23251  df-t1 23337  df-haus 23338  df-tx 23585  df-hmeo 23778  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ulm 26434
This theorem is referenced by:  abelth2  26500
  Copyright terms: Public domain W3C validator