MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelth Structured version   Visualization version   GIF version

Theorem abelth 26187
Description: Abel's theorem. If the power series Σ𝑛 ∈ β„•0𝐴(𝑛)(π‘₯↑𝑛) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle 𝑆 (note that the 𝑀 = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on 𝑆 βˆ– {1} follows more generally from psercn 26172.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
abelth.1 (πœ‘ β†’ 𝐴:β„•0βŸΆβ„‚)
abelth.2 (πœ‘ β†’ seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (πœ‘ β†’ 𝑀 ∈ ℝ)
abelth.4 (πœ‘ β†’ 0 ≀ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ β„‚ ∣ (absβ€˜(1 βˆ’ 𝑧)) ≀ (𝑀 Β· (1 βˆ’ (absβ€˜π‘§)))}
abelth.6 𝐹 = (π‘₯ ∈ 𝑆 ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛)))
Assertion
Ref Expression
abelth (πœ‘ β†’ 𝐹 ∈ (𝑆–cnβ†’β„‚))
Distinct variable groups:   π‘₯,𝑛,𝑧,𝑀   𝐴,𝑛,π‘₯,𝑧   πœ‘,𝑛,π‘₯   𝑆,𝑛,π‘₯
Allowed substitution hints:   πœ‘(𝑧)   𝑆(𝑧)   𝐹(π‘₯,𝑧,𝑛)

Proof of Theorem abelth
Dummy variables 𝑗 𝑀 𝑦 π‘Ÿ 𝑑 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelth.1 . . . 4 (πœ‘ β†’ 𝐴:β„•0βŸΆβ„‚)
2 abelth.2 . . . 4 (πœ‘ β†’ seq0( + , 𝐴) ∈ dom ⇝ )
3 abelth.3 . . . 4 (πœ‘ β†’ 𝑀 ∈ ℝ)
4 abelth.4 . . . 4 (πœ‘ β†’ 0 ≀ 𝑀)
5 abelth.5 . . . 4 𝑆 = {𝑧 ∈ β„‚ ∣ (absβ€˜(1 βˆ’ 𝑧)) ≀ (𝑀 Β· (1 βˆ’ (absβ€˜π‘§)))}
6 abelth.6 . . . 4 𝐹 = (π‘₯ ∈ 𝑆 ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛)))
71, 2, 3, 4, 5, 6abelthlem4 26180 . . 3 (πœ‘ β†’ 𝐹:π‘†βŸΆβ„‚)
81, 2, 3, 4, 5, 6abelthlem9 26186 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑆 ((absβ€˜(1 βˆ’ 𝑦)) < 𝑀 β†’ (absβ€˜((πΉβ€˜1) βˆ’ (πΉβ€˜π‘¦))) < π‘Ÿ))
91, 2, 3, 4, 5abelthlem2 26178 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (1 ∈ 𝑆 ∧ (𝑆 βˆ– {1}) βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))1)))
109simpld 493 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 1 ∈ 𝑆)
1110ad2antrr 722 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ 1 ∈ 𝑆)
12 simpr 483 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ 𝑆)
1311, 12ovresd 7578 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ (1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) = (1(abs ∘ βˆ’ )𝑦))
14 ax-1cn 11172 . . . . . . . . . . . . . . . 16 1 ∈ β„‚
155ssrab3 4081 . . . . . . . . . . . . . . . . 17 𝑆 βŠ† β„‚
1615, 12sselid 3981 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ β„‚)
17 eqid 2730 . . . . . . . . . . . . . . . . 17 (abs ∘ βˆ’ ) = (abs ∘ βˆ’ )
1817cnmetdval 24509 . . . . . . . . . . . . . . . 16 ((1 ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (1(abs ∘ βˆ’ )𝑦) = (absβ€˜(1 βˆ’ 𝑦)))
1914, 16, 18sylancr 585 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ (1(abs ∘ βˆ’ )𝑦) = (absβ€˜(1 βˆ’ 𝑦)))
2013, 19eqtrd 2770 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ (1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) = (absβ€˜(1 βˆ’ 𝑦)))
2120breq1d 5159 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ ((1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) < 𝑀 ↔ (absβ€˜(1 βˆ’ 𝑦)) < 𝑀))
227ad2antrr 722 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ 𝐹:π‘†βŸΆβ„‚)
2322, 11ffvelcdmd 7088 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ (πΉβ€˜1) ∈ β„‚)
247adantr 479 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ 𝐹:π‘†βŸΆβ„‚)
2524ffvelcdmda 7087 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ (πΉβ€˜π‘¦) ∈ β„‚)
2617cnmetdval 24509 . . . . . . . . . . . . . . 15 (((πΉβ€˜1) ∈ β„‚ ∧ (πΉβ€˜π‘¦) ∈ β„‚) β†’ ((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) = (absβ€˜((πΉβ€˜1) βˆ’ (πΉβ€˜π‘¦))))
2723, 25, 26syl2anc 582 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ ((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) = (absβ€˜((πΉβ€˜1) βˆ’ (πΉβ€˜π‘¦))))
2827breq1d 5159 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ (((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) < π‘Ÿ ↔ (absβ€˜((πΉβ€˜1) βˆ’ (πΉβ€˜π‘¦))) < π‘Ÿ))
2921, 28imbi12d 343 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) β†’ (((1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) < 𝑀 β†’ ((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) < π‘Ÿ) ↔ ((absβ€˜(1 βˆ’ 𝑦)) < 𝑀 β†’ (absβ€˜((πΉβ€˜1) βˆ’ (πΉβ€˜π‘¦))) < π‘Ÿ)))
3029ralbidva 3173 . . . . . . . . . . 11 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆ€π‘¦ ∈ 𝑆 ((1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) < 𝑀 β†’ ((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) < π‘Ÿ) ↔ βˆ€π‘¦ ∈ 𝑆 ((absβ€˜(1 βˆ’ 𝑦)) < 𝑀 β†’ (absβ€˜((πΉβ€˜1) βˆ’ (πΉβ€˜π‘¦))) < π‘Ÿ)))
3130rexbidv 3176 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆƒπ‘€ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑆 ((1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) < 𝑀 β†’ ((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) < π‘Ÿ) ↔ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑆 ((absβ€˜(1 βˆ’ 𝑦)) < 𝑀 β†’ (absβ€˜((πΉβ€˜1) βˆ’ (πΉβ€˜π‘¦))) < π‘Ÿ)))
328, 31mpbird 256 . . . . . . . . 9 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑆 ((1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) < 𝑀 β†’ ((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) < π‘Ÿ))
3332ralrimiva 3144 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑆 ((1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) < 𝑀 β†’ ((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) < π‘Ÿ))
34 cnxmet 24511 . . . . . . . . . 10 (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚)
35 xmetres2 24089 . . . . . . . . . 10 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 𝑆 βŠ† β„‚) β†’ ((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆)) ∈ (∞Metβ€˜π‘†))
3634, 15, 35mp2an 688 . . . . . . . . 9 ((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆)) ∈ (∞Metβ€˜π‘†)
37 eqid 2730 . . . . . . . . . . . 12 ((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆)) = ((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))
38 eqid 2730 . . . . . . . . . . . . 13 (TopOpenβ€˜β„‚fld) = (TopOpenβ€˜β„‚fld)
3938cnfldtopn 24520 . . . . . . . . . . . 12 (TopOpenβ€˜β„‚fld) = (MetOpenβ€˜(abs ∘ βˆ’ ))
40 eqid 2730 . . . . . . . . . . . 12 (MetOpenβ€˜((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))) = (MetOpenβ€˜((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆)))
4137, 39, 40metrest 24255 . . . . . . . . . . 11 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 𝑆 βŠ† β„‚) β†’ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) = (MetOpenβ€˜((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))))
4234, 15, 41mp2an 688 . . . . . . . . . 10 ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) = (MetOpenβ€˜((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆)))
4342, 39metcnp 24272 . . . . . . . . 9 ((((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆)) ∈ (∞Metβ€˜π‘†) ∧ (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 1 ∈ 𝑆) β†’ (𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜1) ↔ (𝐹:π‘†βŸΆβ„‚ ∧ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑆 ((1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) < 𝑀 β†’ ((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) < π‘Ÿ))))
4436, 34, 10, 43mp3an12i 1463 . . . . . . . 8 (πœ‘ β†’ (𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜1) ↔ (𝐹:π‘†βŸΆβ„‚ ∧ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘¦ ∈ 𝑆 ((1((abs ∘ βˆ’ ) β†Ύ (𝑆 Γ— 𝑆))𝑦) < 𝑀 β†’ ((πΉβ€˜1)(abs ∘ βˆ’ )(πΉβ€˜π‘¦)) < π‘Ÿ))))
457, 33, 44mpbir2and 709 . . . . . . 7 (πœ‘ β†’ 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜1))
4645ad2antrr 722 . . . . . 6 (((πœ‘ ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 = 1) β†’ 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜1))
47 simpr 483 . . . . . . 7 (((πœ‘ ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 = 1) β†’ 𝑦 = 1)
4847fveq2d 6896 . . . . . 6 (((πœ‘ ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 = 1) β†’ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦) = ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜1))
4946, 48eleqtrrd 2834 . . . . 5 (((πœ‘ ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 = 1) β†’ 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))
50 eldifsn 4791 . . . . . . 7 (𝑦 ∈ (𝑆 βˆ– {1}) ↔ (𝑦 ∈ 𝑆 ∧ 𝑦 β‰  1))
519simprd 494 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (𝑆 βˆ– {1}) βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))1))
52 abscl 15231 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ β„‚ β†’ (absβ€˜π‘€) ∈ ℝ)
5352adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ (absβ€˜π‘€) ∈ ℝ)
5453a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ ((absβ€˜π‘€) < 1 β†’ (absβ€˜π‘€) ∈ ℝ))
55 absge0 15240 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ β„‚ β†’ 0 ≀ (absβ€˜π‘€))
5655adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ 0 ≀ (absβ€˜π‘€))
5756a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ ((absβ€˜π‘€) < 1 β†’ 0 ≀ (absβ€˜π‘€)))
581, 2abelthlem1 26177 . . . . . . . . . . . . . . . . . . . . . . 23 (πœ‘ β†’ 1 ≀ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))
5958adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ 1 ≀ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))
6053rexrd 11270 . . . . . . . . . . . . . . . . . . . . . . 23 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ (absβ€˜π‘€) ∈ ℝ*)
61 1re 11220 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
62 rexr 11266 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℝ β†’ 1 ∈ ℝ*)
6361, 62mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ 1 ∈ ℝ*)
64 iccssxr 13413 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0[,]+∞) βŠ† ℝ*
65 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛)))) = (𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))
66 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) = sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )
6765, 1, 66radcnvcl 26163 . . . . . . . . . . . . . . . . . . . . . . . . 25 (πœ‘ β†’ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
6864, 67sselid 3981 . . . . . . . . . . . . . . . . . . . . . . . 24 (πœ‘ β†’ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
6968adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
70 xrltletr 13142 . . . . . . . . . . . . . . . . . . . . . . 23 (((absβ€˜π‘€) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) β†’ (((absβ€˜π‘€) < 1 ∧ 1 ≀ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )) β†’ (absβ€˜π‘€) < sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )))
7160, 63, 69, 70syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ (((absβ€˜π‘€) < 1 ∧ 1 ≀ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )) β†’ (absβ€˜π‘€) < sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )))
7259, 71mpan2d 690 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ ((absβ€˜π‘€) < 1 β†’ (absβ€˜π‘€) < sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )))
7354, 57, 723jcad 1127 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ ((absβ€˜π‘€) < 1 β†’ ((absβ€˜π‘€) ∈ ℝ ∧ 0 ≀ (absβ€˜π‘€) ∧ (absβ€˜π‘€) < sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))))
74 0cn 11212 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ β„‚
7517cnmetdval 24509 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ β„‚ ∧ 𝑀 ∈ β„‚) β†’ (0(abs ∘ βˆ’ )𝑀) = (absβ€˜(0 βˆ’ 𝑀)))
7674, 75mpan 686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ β„‚ β†’ (0(abs ∘ βˆ’ )𝑀) = (absβ€˜(0 βˆ’ 𝑀)))
77 abssub 15279 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ β„‚ ∧ 𝑀 ∈ β„‚) β†’ (absβ€˜(0 βˆ’ 𝑀)) = (absβ€˜(𝑀 βˆ’ 0)))
7874, 77mpan 686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ β„‚ β†’ (absβ€˜(0 βˆ’ 𝑀)) = (absβ€˜(𝑀 βˆ’ 0)))
79 subid1 11486 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ β„‚ β†’ (𝑀 βˆ’ 0) = 𝑀)
8079fveq2d 6896 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ β„‚ β†’ (absβ€˜(𝑀 βˆ’ 0)) = (absβ€˜π‘€))
8176, 78, 803eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ β„‚ β†’ (0(abs ∘ βˆ’ )𝑀) = (absβ€˜π‘€))
8281breq1d 5159 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ β„‚ β†’ ((0(abs ∘ βˆ’ )𝑀) < 1 ↔ (absβ€˜π‘€) < 1))
8382adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ ((0(abs ∘ βˆ’ )𝑀) < 1 ↔ (absβ€˜π‘€) < 1))
84 0re 11222 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ
85 elico2 13394 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) β†’ ((absβ€˜π‘€) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )) ↔ ((absβ€˜π‘€) ∈ ℝ ∧ 0 ≀ (absβ€˜π‘€) ∧ (absβ€˜π‘€) < sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))))
8684, 69, 85sylancr 585 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ ((absβ€˜π‘€) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )) ↔ ((absβ€˜π‘€) ∈ ℝ ∧ 0 ≀ (absβ€˜π‘€) ∧ (absβ€˜π‘€) < sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))))
8773, 83, 863imtr4d 293 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ ((0(abs ∘ βˆ’ )𝑀) < 1 β†’ (absβ€˜π‘€) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))))
8887imdistanda 570 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ ((𝑀 ∈ β„‚ ∧ (0(abs ∘ βˆ’ )𝑀) < 1) β†’ (𝑀 ∈ β„‚ ∧ (absβ€˜π‘€) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )))))
89 1xr 11279 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
90 elbl 24116 . . . . . . . . . . . . . . . . . . 19 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ 1 ∈ ℝ*) β†’ (𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↔ (𝑀 ∈ β„‚ ∧ (0(abs ∘ βˆ’ )𝑀) < 1)))
9134, 74, 89, 90mp3an 1459 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↔ (𝑀 ∈ β„‚ ∧ (0(abs ∘ βˆ’ )𝑀) < 1))
92 absf 15290 . . . . . . . . . . . . . . . . . . 19 abs:β„‚βŸΆβ„
93 ffn 6718 . . . . . . . . . . . . . . . . . . 19 (abs:β„‚βŸΆβ„ β†’ abs Fn β„‚)
94 elpreima 7060 . . . . . . . . . . . . . . . . . . 19 (abs Fn β„‚ β†’ (𝑀 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑀 ∈ β„‚ ∧ (absβ€˜π‘€) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )))))
9592, 93, 94mp2b 10 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑀 ∈ β„‚ ∧ (absβ€˜π‘€) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))))
9688, 91, 953imtr4g 295 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 𝑀 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )))))
9796ssrdv 3989 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (0(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))))
9851, 97sstrd 3993 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝑆 βˆ– {1}) βŠ† (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))))
9998resmptd 6041 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) β†Ύ (𝑆 βˆ– {1})) = (π‘₯ ∈ (𝑆 βˆ– {1}) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))))
1006reseq1i 5978 . . . . . . . . . . . . . . 15 (𝐹 β†Ύ (𝑆 βˆ– {1})) = ((π‘₯ ∈ 𝑆 ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) β†Ύ (𝑆 βˆ– {1}))
101 difss 4132 . . . . . . . . . . . . . . . 16 (𝑆 βˆ– {1}) βŠ† 𝑆
102 resmpt 6038 . . . . . . . . . . . . . . . 16 ((𝑆 βˆ– {1}) βŠ† 𝑆 β†’ ((π‘₯ ∈ 𝑆 ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) β†Ύ (𝑆 βˆ– {1})) = (π‘₯ ∈ (𝑆 βˆ– {1}) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))))
103101, 102ax-mp 5 . . . . . . . . . . . . . . 15 ((π‘₯ ∈ 𝑆 ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) β†Ύ (𝑆 βˆ– {1})) = (π‘₯ ∈ (𝑆 βˆ– {1}) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛)))
104100, 103eqtri 2758 . . . . . . . . . . . . . 14 (𝐹 β†Ύ (𝑆 βˆ– {1})) = (π‘₯ ∈ (𝑆 βˆ– {1}) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛)))
10599, 104eqtr4di 2788 . . . . . . . . . . . . 13 (πœ‘ β†’ ((π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) β†Ύ (𝑆 βˆ– {1})) = (𝐹 β†Ύ (𝑆 βˆ– {1})))
106 cnvimass 6081 . . . . . . . . . . . . . . . . . . 19 (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) βŠ† dom abs
10792fdmi 6730 . . . . . . . . . . . . . . . . . . 19 dom abs = β„‚
108106, 107sseqtri 4019 . . . . . . . . . . . . . . . . . 18 (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) βŠ† β„‚
109108sseli 3979 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) β†’ π‘₯ ∈ β„‚)
110 fveq2 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 β†’ (π΄β€˜π‘›) = (π΄β€˜π‘—))
111 oveq2 7421 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 β†’ (π‘₯↑𝑛) = (π‘₯↑𝑗))
112110, 111oveq12d 7431 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 β†’ ((π΄β€˜π‘›) Β· (π‘₯↑𝑛)) = ((π΄β€˜π‘—) Β· (π‘₯↑𝑗)))
113112cbvsumv 15648 . . . . . . . . . . . . . . . . . 18 Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛)) = Σ𝑗 ∈ β„•0 ((π΄β€˜π‘—) Β· (π‘₯↑𝑗))
11465pserval2 26157 . . . . . . . . . . . . . . . . . . 19 ((π‘₯ ∈ β„‚ ∧ 𝑗 ∈ β„•0) β†’ (((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘₯)β€˜π‘—) = ((π΄β€˜π‘—) Β· (π‘₯↑𝑗)))
115114sumeq2dv 15655 . . . . . . . . . . . . . . . . . 18 (π‘₯ ∈ β„‚ β†’ Σ𝑗 ∈ β„•0 (((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘₯)β€˜π‘—) = Σ𝑗 ∈ β„•0 ((π΄β€˜π‘—) Β· (π‘₯↑𝑗)))
116113, 115eqtr4id 2789 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ β„‚ β†’ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛)) = Σ𝑗 ∈ β„•0 (((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘₯)β€˜π‘—))
117109, 116syl 17 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) β†’ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛)) = Σ𝑗 ∈ β„•0 (((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘₯)β€˜π‘—))
118117mpteq2ia 5252 . . . . . . . . . . . . . . 15 (π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) = (π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑗 ∈ β„•0 (((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘₯)β€˜π‘—))
119 eqid 2730 . . . . . . . . . . . . . . 15 (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) = (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )))
120 eqid 2730 . . . . . . . . . . . . . . 15 if(sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((absβ€˜π‘£) + sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((absβ€˜π‘£) + 1)) = if(sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((absβ€˜π‘£) + sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((absβ€˜π‘£) + 1))
12165, 118, 1, 66, 119, 120psercn 26172 . . . . . . . . . . . . . 14 (πœ‘ β†’ (π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) ∈ ((β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )))–cnβ†’β„‚))
122 rescncf 24639 . . . . . . . . . . . . . 14 ((𝑆 βˆ– {1}) βŠ† (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) β†’ ((π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) ∈ ((β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )))–cnβ†’β„‚) β†’ ((π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) β†Ύ (𝑆 βˆ– {1})) ∈ ((𝑆 βˆ– {1})–cnβ†’β„‚)))
12398, 121, 122sylc 65 . . . . . . . . . . . . 13 (πœ‘ β†’ ((π‘₯ ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((𝑑 ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (𝑑↑𝑛))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))) β†Ύ (𝑆 βˆ– {1})) ∈ ((𝑆 βˆ– {1})–cnβ†’β„‚))
124105, 123eqeltrrd 2832 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐹 β†Ύ (𝑆 βˆ– {1})) ∈ ((𝑆 βˆ– {1})–cnβ†’β„‚))
125124adantr 479 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ (𝐹 β†Ύ (𝑆 βˆ– {1})) ∈ ((𝑆 βˆ– {1})–cnβ†’β„‚))
126101, 15sstri 3992 . . . . . . . . . . . 12 (𝑆 βˆ– {1}) βŠ† β„‚
127 ssid 4005 . . . . . . . . . . . 12 β„‚ βŠ† β„‚
128 eqid 2730 . . . . . . . . . . . . 13 ((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) = ((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1}))
12938cnfldtopon 24521 . . . . . . . . . . . . . 14 (TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚)
130129toponrestid 22645 . . . . . . . . . . . . 13 (TopOpenβ€˜β„‚fld) = ((TopOpenβ€˜β„‚fld) β†Ύt β„‚)
13138, 128, 130cncfcn 24652 . . . . . . . . . . . 12 (((𝑆 βˆ– {1}) βŠ† β„‚ ∧ β„‚ βŠ† β„‚) β†’ ((𝑆 βˆ– {1})–cnβ†’β„‚) = (((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) Cn (TopOpenβ€˜β„‚fld)))
132126, 127, 131mp2an 688 . . . . . . . . . . 11 ((𝑆 βˆ– {1})–cnβ†’β„‚) = (((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) Cn (TopOpenβ€˜β„‚fld))
133125, 132eleqtrdi 2841 . . . . . . . . . 10 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ (𝐹 β†Ύ (𝑆 βˆ– {1})) ∈ (((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) Cn (TopOpenβ€˜β„‚fld)))
134 simpr 483 . . . . . . . . . 10 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ 𝑦 ∈ (𝑆 βˆ– {1}))
135 resttopon 22887 . . . . . . . . . . . . 13 (((TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚) ∧ (𝑆 βˆ– {1}) βŠ† β„‚) β†’ ((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) ∈ (TopOnβ€˜(𝑆 βˆ– {1})))
136129, 126, 135mp2an 688 . . . . . . . . . . . 12 ((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) ∈ (TopOnβ€˜(𝑆 βˆ– {1}))
137136toponunii 22640 . . . . . . . . . . 11 (𝑆 βˆ– {1}) = βˆͺ ((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1}))
138137cncnpi 23004 . . . . . . . . . 10 (((𝐹 β†Ύ (𝑆 βˆ– {1})) ∈ (((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) Cn (TopOpenβ€˜β„‚fld)) ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ (𝐹 β†Ύ (𝑆 βˆ– {1})) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))
139133, 134, 138syl2anc 582 . . . . . . . . 9 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ (𝐹 β†Ύ (𝑆 βˆ– {1})) ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))
14038cnfldtop 24522 . . . . . . . . . . . 12 (TopOpenβ€˜β„‚fld) ∈ Top
141 cnex 11195 . . . . . . . . . . . . 13 β„‚ ∈ V
142141, 15ssexi 5323 . . . . . . . . . . . 12 𝑆 ∈ V
143 restabs 22891 . . . . . . . . . . . 12 (((TopOpenβ€˜β„‚fld) ∈ Top ∧ (𝑆 βˆ– {1}) βŠ† 𝑆 ∧ 𝑆 ∈ V) β†’ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) β†Ύt (𝑆 βˆ– {1})) = ((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})))
144140, 101, 142, 143mp3an 1459 . . . . . . . . . . 11 (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) β†Ύt (𝑆 βˆ– {1})) = ((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1}))
145144oveq1i 7423 . . . . . . . . . 10 ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) β†Ύt (𝑆 βˆ– {1})) CnP (TopOpenβ€˜β„‚fld)) = (((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) CnP (TopOpenβ€˜β„‚fld))
146145fveq1i 6893 . . . . . . . . 9 (((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) β†Ύt (𝑆 βˆ– {1})) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦) = ((((TopOpenβ€˜β„‚fld) β†Ύt (𝑆 βˆ– {1})) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦)
147139, 146eleqtrrdi 2842 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ (𝐹 β†Ύ (𝑆 βˆ– {1})) ∈ (((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) β†Ύt (𝑆 βˆ– {1})) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))
148 resttop 22886 . . . . . . . . . . 11 (((TopOpenβ€˜β„‚fld) ∈ Top ∧ 𝑆 ∈ V) β†’ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ Top)
149140, 142, 148mp2an 688 . . . . . . . . . 10 ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ Top
150149a1i 11 . . . . . . . . 9 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ Top)
151101a1i 11 . . . . . . . . 9 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ (𝑆 βˆ– {1}) βŠ† 𝑆)
15210snssd 4813 . . . . . . . . . . . . 13 (πœ‘ β†’ {1} βŠ† 𝑆)
15338cnfldhaus 24523 . . . . . . . . . . . . . . 15 (TopOpenβ€˜β„‚fld) ∈ Haus
154 unicntop 24524 . . . . . . . . . . . . . . . 16 β„‚ = βˆͺ (TopOpenβ€˜β„‚fld)
155154sncld 23097 . . . . . . . . . . . . . . 15 (((TopOpenβ€˜β„‚fld) ∈ Haus ∧ 1 ∈ β„‚) β†’ {1} ∈ (Clsdβ€˜(TopOpenβ€˜β„‚fld)))
156153, 14, 155mp2an 688 . . . . . . . . . . . . . 14 {1} ∈ (Clsdβ€˜(TopOpenβ€˜β„‚fld))
157154restcldi 22899 . . . . . . . . . . . . . 14 ((𝑆 βŠ† β„‚ ∧ {1} ∈ (Clsdβ€˜(TopOpenβ€˜β„‚fld)) ∧ {1} βŠ† 𝑆) β†’ {1} ∈ (Clsdβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑆)))
15815, 156, 157mp3an12 1449 . . . . . . . . . . . . 13 ({1} βŠ† 𝑆 β†’ {1} ∈ (Clsdβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑆)))
159154restuni 22888 . . . . . . . . . . . . . . 15 (((TopOpenβ€˜β„‚fld) ∈ Top ∧ 𝑆 βŠ† β„‚) β†’ 𝑆 = βˆͺ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))
160140, 15, 159mp2an 688 . . . . . . . . . . . . . 14 𝑆 = βˆͺ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆)
161160cldopn 22757 . . . . . . . . . . . . 13 ({1} ∈ (Clsdβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑆)) β†’ (𝑆 βˆ– {1}) ∈ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))
162152, 158, 1613syl 18 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑆 βˆ– {1}) ∈ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))
163160isopn3 22792 . . . . . . . . . . . . 13 ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ Top ∧ (𝑆 βˆ– {1}) βŠ† 𝑆) β†’ ((𝑆 βˆ– {1}) ∈ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ↔ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))β€˜(𝑆 βˆ– {1})) = (𝑆 βˆ– {1})))
164149, 101, 163mp2an 688 . . . . . . . . . . . 12 ((𝑆 βˆ– {1}) ∈ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ↔ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))β€˜(𝑆 βˆ– {1})) = (𝑆 βˆ– {1}))
165162, 164sylib 217 . . . . . . . . . . 11 (πœ‘ β†’ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))β€˜(𝑆 βˆ– {1})) = (𝑆 βˆ– {1}))
166165eleq2d 2817 . . . . . . . . . 10 (πœ‘ β†’ (𝑦 ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))β€˜(𝑆 βˆ– {1})) ↔ 𝑦 ∈ (𝑆 βˆ– {1})))
167166biimpar 476 . . . . . . . . 9 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ 𝑦 ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))β€˜(𝑆 βˆ– {1})))
1687adantr 479 . . . . . . . . 9 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ 𝐹:π‘†βŸΆβ„‚)
169160, 154cnprest 23015 . . . . . . . . 9 (((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ Top ∧ (𝑆 βˆ– {1}) βŠ† 𝑆) ∧ (𝑦 ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))β€˜(𝑆 βˆ– {1})) ∧ 𝐹:π‘†βŸΆβ„‚)) β†’ (𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦) ↔ (𝐹 β†Ύ (𝑆 βˆ– {1})) ∈ (((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) β†Ύt (𝑆 βˆ– {1})) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦)))
170150, 151, 167, 168, 169syl22anc 835 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ (𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦) ↔ (𝐹 β†Ύ (𝑆 βˆ– {1})) ∈ (((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) β†Ύt (𝑆 βˆ– {1})) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦)))
171147, 170mpbird 256 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ (𝑆 βˆ– {1})) β†’ 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))
17250, 171sylan2br 593 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑦 β‰  1)) β†’ 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))
173172anassrs 466 . . . . 5 (((πœ‘ ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 β‰  1) β†’ 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))
17449, 173pm2.61dane 3027 . . . 4 ((πœ‘ ∧ 𝑦 ∈ 𝑆) β†’ 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))
175174ralrimiva 3144 . . 3 (πœ‘ β†’ βˆ€π‘¦ ∈ 𝑆 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))
176 resttopon 22887 . . . . 5 (((TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚) ∧ 𝑆 βŠ† β„‚) β†’ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ (TopOnβ€˜π‘†))
177129, 15, 176mp2an 688 . . . 4 ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ (TopOnβ€˜π‘†)
178 cncnp 23006 . . . 4 ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) ∈ (TopOnβ€˜π‘†) ∧ (TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚)) β†’ (𝐹 ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn (TopOpenβ€˜β„‚fld)) ↔ (𝐹:π‘†βŸΆβ„‚ ∧ βˆ€π‘¦ ∈ 𝑆 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦))))
179177, 129, 178mp2an 688 . . 3 (𝐹 ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn (TopOpenβ€˜β„‚fld)) ↔ (𝐹:π‘†βŸΆβ„‚ ∧ βˆ€π‘¦ ∈ 𝑆 𝐹 ∈ ((((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) CnP (TopOpenβ€˜β„‚fld))β€˜π‘¦)))
1807, 175, 179sylanbrc 581 . 2 (πœ‘ β†’ 𝐹 ∈ (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn (TopOpenβ€˜β„‚fld)))
181 eqid 2730 . . . 4 ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) = ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆)
18238, 181, 130cncfcn 24652 . . 3 ((𝑆 βŠ† β„‚ ∧ β„‚ βŠ† β„‚) β†’ (𝑆–cnβ†’β„‚) = (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn (TopOpenβ€˜β„‚fld)))
18315, 127, 182mp2an 688 . 2 (𝑆–cnβ†’β„‚) = (((TopOpenβ€˜β„‚fld) β†Ύt 𝑆) Cn (TopOpenβ€˜β„‚fld))
184180, 183eleqtrrdi 2842 1 (πœ‘ β†’ 𝐹 ∈ (𝑆–cnβ†’β„‚))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  βˆƒwrex 3068  {crab 3430  Vcvv 3472   βˆ– cdif 3946   βŠ† wss 3949  ifcif 4529  {csn 4629  βˆͺ cuni 4909   class class class wbr 5149   ↦ cmpt 5232   Γ— cxp 5675  β—‘ccnv 5676  dom cdm 5677   β†Ύ cres 5679   β€œ cima 5680   ∘ ccom 5681   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7413  supcsup 9439  β„‚cc 11112  β„cr 11113  0cc0 11114  1c1 11115   + caddc 11117   Β· cmul 11119  +∞cpnf 11251  β„*cxr 11253   < clt 11254   ≀ cle 11255   βˆ’ cmin 11450   / cdiv 11877  2c2 12273  β„•0cn0 12478  β„+crp 12980  [,)cico 13332  [,]cicc 13333  seqcseq 13972  β†‘cexp 14033  abscabs 15187   ⇝ cli 15434  Ξ£csu 15638   β†Ύt crest 17372  TopOpenctopn 17373  βˆžMetcxmet 21131  ballcbl 21133  MetOpencmopn 21136  β„‚fldccnfld 21146  Topctop 22617  TopOnctopon 22634  Clsdccld 22742  intcnt 22743   Cn ccn 22950   CnP ccnp 22951  Hauscha 23034  β€“cnβ†’ccncf 24618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-inf2 9640  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193  ax-mulf 11194
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-fi 9410  df-sup 9441  df-inf 9442  df-oi 9509  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-2 12281  df-3 12282  df-4 12283  df-5 12284  df-6 12285  df-7 12286  df-8 12287  df-9 12288  df-n0 12479  df-z 12565  df-dec 12684  df-uz 12829  df-q 12939  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-fl 13763  df-seq 13973  df-exp 14034  df-hash 14297  df-shft 15020  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-limsup 15421  df-clim 15438  df-rlim 15439  df-sum 15639  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-starv 17218  df-sca 17219  df-vsca 17220  df-ip 17221  df-tset 17222  df-ple 17223  df-ds 17225  df-unif 17226  df-hom 17227  df-cco 17228  df-rest 17374  df-topn 17375  df-0g 17393  df-gsum 17394  df-topgen 17395  df-pt 17396  df-prds 17399  df-xrs 17454  df-qtop 17459  df-imas 17460  df-xps 17462  df-mre 17536  df-mrc 17537  df-acs 17539  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18708  df-mulg 18989  df-cntz 19224  df-cmn 19693  df-psmet 21138  df-xmet 21139  df-met 21140  df-bl 21141  df-mopn 21142  df-cnfld 21147  df-top 22618  df-topon 22635  df-topsp 22657  df-bases 22671  df-cld 22745  df-ntr 22746  df-cn 22953  df-cnp 22954  df-t1 23040  df-haus 23041  df-tx 23288  df-hmeo 23481  df-xms 24048  df-ms 24049  df-tms 24050  df-cncf 24620  df-ulm 26123
This theorem is referenced by:  abelth2  26188
  Copyright terms: Public domain W3C validator