MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelth Structured version   Visualization version   GIF version

Theorem abelth 26327
Description: Abel's theorem. If the power series Σ𝑛 ∈ ℕ0𝐴(𝑛)(𝑥𝑛) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle 𝑆 (note that the 𝑀 = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on 𝑆 ∖ {1} follows more generally from psercn 26312.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
Assertion
Ref Expression
abelth (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelth
Dummy variables 𝑗 𝑤 𝑦 𝑟 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelth.1 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
2 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
3 abelth.3 . . . 4 (𝜑𝑀 ∈ ℝ)
4 abelth.4 . . . 4 (𝜑 → 0 ≤ 𝑀)
5 abelth.5 . . . 4 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
6 abelth.6 . . . 4 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
71, 2, 3, 4, 5, 6abelthlem4 26320 . . 3 (𝜑𝐹:𝑆⟶ℂ)
81, 2, 3, 4, 5, 6abelthlem9 26326 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟))
91, 2, 3, 4, 5abelthlem2 26318 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
109simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ 𝑆)
1110ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 1 ∈ 𝑆)
12 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 𝑦𝑆)
1311, 12ovresd 7536 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) = (1(abs ∘ − )𝑦))
14 ax-1cn 11102 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
155ssrab3 4041 . . . . . . . . . . . . . . . . 17 𝑆 ⊆ ℂ
1615, 12sselid 3941 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 𝑦 ∈ ℂ)
17 eqid 2729 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) = (abs ∘ − )
1817cnmetdval 24634 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1(abs ∘ − )𝑦) = (abs‘(1 − 𝑦)))
1914, 16, 18sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (1(abs ∘ − )𝑦) = (abs‘(1 − 𝑦)))
2013, 19eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) = (abs‘(1 − 𝑦)))
2120breq1d 5112 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 ↔ (abs‘(1 − 𝑦)) < 𝑤))
227ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 𝐹:𝑆⟶ℂ)
2322, 11ffvelcdmd 7039 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (𝐹‘1) ∈ ℂ)
247adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑆⟶ℂ)
2524ffvelcdmda 7038 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (𝐹𝑦) ∈ ℂ)
2617cnmetdval 24634 . . . . . . . . . . . . . . 15 (((𝐹‘1) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) = (abs‘((𝐹‘1) − (𝐹𝑦))))
2723, 25, 26syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) = (abs‘((𝐹‘1) − (𝐹𝑦))))
2827breq1d 5112 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟 ↔ (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟))
2921, 28imbi12d 344 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟) ↔ ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟)))
3029ralbidva 3154 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (∀𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟) ↔ ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟)))
3130rexbidv 3157 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟) ↔ ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟)))
328, 31mpbird 257 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))
3332ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑟 ∈ ℝ+𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))
34 cnxmet 24636 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
35 xmetres2 24225 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
3634, 15, 35mp2an 692 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆)
37 eqid 2729 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
38 eqid 2729 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3938cnfldtopn 24645 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
40 eqid 2729 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
4137, 39, 40metrest 24388 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
4234, 15, 41mp2an 692 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
4342, 39metcnp 24405 . . . . . . . . 9 ((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ 𝑆) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑟 ∈ ℝ+𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))))
4436, 34, 10, 43mp3an12i 1467 . . . . . . . 8 (𝜑 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑟 ∈ ℝ+𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))))
457, 33, 44mpbir2and 713 . . . . . . 7 (𝜑𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1))
4645ad2antrr 726 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1))
47 simpr 484 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → 𝑦 = 1)
4847fveq2d 6844 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1))
4946, 48eleqtrrd 2831 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
50 eldifsn 4746 . . . . . . 7 (𝑦 ∈ (𝑆 ∖ {1}) ↔ (𝑦𝑆𝑦 ≠ 1))
519simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
52 abscl 15220 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (abs‘𝑤) ∈ ℝ)
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → (abs‘𝑤) ∈ ℝ)
5453a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → (abs‘𝑤) ∈ ℝ))
55 absge0 15229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → 0 ≤ (abs‘𝑤))
5655adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → 0 ≤ (abs‘𝑤))
5756a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → 0 ≤ (abs‘𝑤)))
581, 2abelthlem1 26317 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
5958adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6053rexrd 11200 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℂ) → (abs‘𝑤) ∈ ℝ*)
61 1re 11150 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
62 rexr 11196 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℝ → 1 ∈ ℝ*)
6361, 62mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℂ) → 1 ∈ ℝ*)
64 iccssxr 13367 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0[,]+∞) ⊆ ℝ*
65 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛)))) = (𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))
66 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
6765, 1, 66radcnvcl 26302 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
6864, 67sselid 3941 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℂ) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
70 xrltletr 13093 . . . . . . . . . . . . . . . . . . . . . . 23 (((abs‘𝑤) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) → (((abs‘𝑤) < 1 ∧ 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) → (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
7160, 63, 69, 70syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → (((abs‘𝑤) < 1 ∧ 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) → (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
7259, 71mpan2d 694 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
7354, 57, 723jcad 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → ((abs‘𝑤) ∈ ℝ ∧ 0 ≤ (abs‘𝑤) ∧ (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
74 0cn 11142 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℂ
7517cnmetdval 24634 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (0(abs ∘ − )𝑤) = (abs‘(0 − 𝑤)))
7674, 75mpan 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (0(abs ∘ − )𝑤) = (abs‘(0 − 𝑤)))
77 abssub 15269 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(0 − 𝑤)) = (abs‘(𝑤 − 0)))
7874, 77mpan 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (abs‘(0 − 𝑤)) = (abs‘(𝑤 − 0)))
79 subid1 11418 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ ℂ → (𝑤 − 0) = 𝑤)
8079fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (abs‘(𝑤 − 0)) = (abs‘𝑤))
8176, 78, 803eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℂ → (0(abs ∘ − )𝑤) = (abs‘𝑤))
8281breq1d 5112 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℂ → ((0(abs ∘ − )𝑤) < 1 ↔ (abs‘𝑤) < 1))
8382adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℂ) → ((0(abs ∘ − )𝑤) < 1 ↔ (abs‘𝑤) < 1))
84 0re 11152 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ
85 elico2 13347 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) → ((abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑤) ∈ ℝ ∧ 0 ≤ (abs‘𝑤) ∧ (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
8684, 69, 85sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑤) ∈ ℝ ∧ 0 ≤ (abs‘𝑤) ∧ (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
8773, 83, 863imtr4d 294 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℂ) → ((0(abs ∘ − )𝑤) < 1 → (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
8887imdistanda 571 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑤 ∈ ℂ ∧ (0(abs ∘ − )𝑤) < 1) → (𝑤 ∈ ℂ ∧ (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))))
89 1xr 11209 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
90 elbl 24252 . . . . . . . . . . . . . . . . . . 19 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑤 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑤 ∈ ℂ ∧ (0(abs ∘ − )𝑤) < 1)))
9134, 74, 89, 90mp3an 1463 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑤 ∈ ℂ ∧ (0(abs ∘ − )𝑤) < 1))
92 absf 15280 . . . . . . . . . . . . . . . . . . 19 abs:ℂ⟶ℝ
93 ffn 6670 . . . . . . . . . . . . . . . . . . 19 (abs:ℂ⟶ℝ → abs Fn ℂ)
94 elpreima 7012 . . . . . . . . . . . . . . . . . . 19 (abs Fn ℂ → (𝑤 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑤 ∈ ℂ ∧ (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))))
9592, 93, 94mp2b 10 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑤 ∈ ℂ ∧ (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
9688, 91, 953imtr4g 296 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (0(ball‘(abs ∘ − ))1) → 𝑤 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))))
9796ssrdv 3949 . . . . . . . . . . . . . . . 16 (𝜑 → (0(ball‘(abs ∘ − ))1) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
9851, 97sstrd 3954 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 ∖ {1}) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
9998resmptd 6000 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))))
1006reseq1i 5935 . . . . . . . . . . . . . . 15 (𝐹 ↾ (𝑆 ∖ {1})) = ((𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1}))
101 difss 4095 . . . . . . . . . . . . . . . 16 (𝑆 ∖ {1}) ⊆ 𝑆
102 resmpt 5997 . . . . . . . . . . . . . . . 16 ((𝑆 ∖ {1}) ⊆ 𝑆 → ((𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))))
103101, 102ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
104100, 103eqtri 2752 . . . . . . . . . . . . . 14 (𝐹 ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
10599, 104eqtr4di 2782 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝐹 ↾ (𝑆 ∖ {1})))
106 cnvimass 6042 . . . . . . . . . . . . . . . . . . 19 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ⊆ dom abs
10792fdmi 6681 . . . . . . . . . . . . . . . . . . 19 dom abs = ℂ
108106, 107sseqtri 3992 . . . . . . . . . . . . . . . . . 18 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ⊆ ℂ
109108sseli 3939 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) → 𝑥 ∈ ℂ)
110 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
111 oveq2 7377 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝑥𝑛) = (𝑥𝑗))
112110, 111oveq12d 7387 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑗) · (𝑥𝑗)))
113112cbvsumv 15638 . . . . . . . . . . . . . . . . . 18 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) · (𝑥𝑗))
11465pserval2 26296 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗) = ((𝐴𝑗) · (𝑥𝑗)))
115114sumeq2dv 15644 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) · (𝑥𝑗)))
116113, 115eqtr4id 2783 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗))
117109, 116syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗))
118117mpteq2ia 5197 . . . . . . . . . . . . . . 15 (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) = (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗))
119 eqid 2729 . . . . . . . . . . . . . . 15 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) = (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
120 eqid 2729 . . . . . . . . . . . . . . 15 if(sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑣) + sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑣) + 1)) = if(sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑣) + sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑣) + 1))
12165, 118, 1, 66, 119, 120psercn 26312 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ))
122 rescncf 24766 . . . . . . . . . . . . . 14 ((𝑆 ∖ {1}) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ) → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ)))
12398, 121, 122sylc 65 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ))
124105, 123eqeltrrd 2829 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ))
125124adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ))
126101, 15sstri 3953 . . . . . . . . . . . 12 (𝑆 ∖ {1}) ⊆ ℂ
127 ssid 3966 . . . . . . . . . . . 12 ℂ ⊆ ℂ
128 eqid 2729 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1}))
12938cnfldtopon 24646 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
130129toponrestid 22784 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
13138, 128, 130cncfcn 24779 . . . . . . . . . . . 12 (((𝑆 ∖ {1}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝑆 ∖ {1})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld)))
132126, 127, 131mp2an 692 . . . . . . . . . . 11 ((𝑆 ∖ {1})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld))
133125, 132eleqtrdi 2838 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld)))
134 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝑦 ∈ (𝑆 ∖ {1}))
135 resttopon 23024 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝑆 ∖ {1}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) ∈ (TopOn‘(𝑆 ∖ {1})))
136129, 126, 135mp2an 692 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) ∈ (TopOn‘(𝑆 ∖ {1}))
137136toponunii 22779 . . . . . . . . . . 11 (𝑆 ∖ {1}) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1}))
138137cncnpi 23141 . . . . . . . . . 10 (((𝐹 ↾ (𝑆 ∖ {1})) ∈ (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦))
139133, 134, 138syl2anc 584 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦))
14038cnfldtop 24647 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
141 cnex 11125 . . . . . . . . . . . . 13 ℂ ∈ V
142141, 15ssexi 5272 . . . . . . . . . . . 12 𝑆 ∈ V
143 restabs 23028 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑆 ∖ {1}) ⊆ 𝑆𝑆 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})))
144140, 101, 142, 143mp3an 1463 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1}))
145144oveq1i 7379 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))
146145fveq1i 6841 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦)
147139, 146eleqtrrdi 2839 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦))
148 resttop 23023 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
149140, 142, 148mp2an 692 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top
150149a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
151101a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝑆 ∖ {1}) ⊆ 𝑆)
15210snssd 4769 . . . . . . . . . . . . 13 (𝜑 → {1} ⊆ 𝑆)
15338cnfldhaus 24648 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Haus
154 unicntop 24649 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
155154sncld 23234 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ Haus ∧ 1 ∈ ℂ) → {1} ∈ (Clsd‘(TopOpen‘ℂfld)))
156153, 14, 155mp2an 692 . . . . . . . . . . . . . 14 {1} ∈ (Clsd‘(TopOpen‘ℂfld))
157154restcldi 23036 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ {1} ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ {1} ⊆ 𝑆) → {1} ∈ (Clsd‘((TopOpen‘ℂfld) ↾t 𝑆)))
15815, 156, 157mp3an12 1453 . . . . . . . . . . . . 13 ({1} ⊆ 𝑆 → {1} ∈ (Clsd‘((TopOpen‘ℂfld) ↾t 𝑆)))
159154restuni 23025 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
160140, 15, 159mp2an 692 . . . . . . . . . . . . . 14 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆)
161160cldopn 22894 . . . . . . . . . . . . 13 ({1} ∈ (Clsd‘((TopOpen‘ℂfld) ↾t 𝑆)) → (𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
162152, 158, 1613syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
163160isopn3 22929 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (𝑆 ∖ {1}) ⊆ 𝑆) → ((𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) = (𝑆 ∖ {1})))
164149, 101, 163mp2an 692 . . . . . . . . . . . 12 ((𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) = (𝑆 ∖ {1}))
165162, 164sylib 218 . . . . . . . . . . 11 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) = (𝑆 ∖ {1}))
166165eleq2d 2814 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) ↔ 𝑦 ∈ (𝑆 ∖ {1})))
167166biimpar 477 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})))
1687adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝐹:𝑆⟶ℂ)
169160, 154cnprest 23152 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (𝑆 ∖ {1}) ⊆ 𝑆) ∧ (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) ∧ 𝐹:𝑆⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦)))
170150, 151, 167, 168, 169syl22anc 838 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦)))
171147, 170mpbird 257 . . . . . . 7 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
17250, 171sylan2br 595 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ 1)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
173172anassrs 467 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑦 ≠ 1) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
17449, 173pm2.61dane 3012 . . . 4 ((𝜑𝑦𝑆) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
175174ralrimiva 3125 . . 3 (𝜑 → ∀𝑦𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
176 resttopon 23024 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
177129, 15, 176mp2an 692 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)
178 cncnp 23143 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑦𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))))
179177, 129, 178mp2an 692 . . 3 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑦𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦)))
1807, 175, 179sylanbrc 583 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
181 eqid 2729 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
18238, 181, 130cncfcn 24779 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
18315, 127, 182mp2an 692 . 2 (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
184180, 183eleqtrrdi 2839 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  wss 3911  ifcif 4484  {csn 4585   cuni 4867   class class class wbr 5102  cmpt 5183   × cxp 5629  ccnv 5630  dom cdm 5631  cres 5633  cima 5634  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  2c2 12217  0cn0 12418  +crp 12927  [,)cico 13284  [,]cicc 13285  seqcseq 13942  cexp 14002  abscabs 15176  cli 15426  Σcsu 15628  t crest 17359  TopOpenctopn 17360  ∞Metcxmet 21225  ballcbl 21227  MetOpencmopn 21230  fldccnfld 21240  Topctop 22756  TopOnctopon 22773  Clsdccld 22879  intcnt 22880   Cn ccn 23087   CnP ccnp 23088  Hauscha 23171  cnccncf 24745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cn 23090  df-cnp 23091  df-t1 23177  df-haus 23178  df-tx 23425  df-hmeo 23618  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-ulm 26262
This theorem is referenced by:  abelth2  26328
  Copyright terms: Public domain W3C validator