MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelth Structured version   Visualization version   GIF version

Theorem abelth 25180
Description: Abel's theorem. If the power series Σ𝑛 ∈ ℕ0𝐴(𝑛)(𝑥𝑛) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle 𝑆 (note that the 𝑀 = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on 𝑆 ∖ {1} follows more generally from psercn 25165.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
Assertion
Ref Expression
abelth (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelth
Dummy variables 𝑗 𝑤 𝑦 𝑟 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelth.1 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
2 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
3 abelth.3 . . . 4 (𝜑𝑀 ∈ ℝ)
4 abelth.4 . . . 4 (𝜑 → 0 ≤ 𝑀)
5 abelth.5 . . . 4 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
6 abelth.6 . . . 4 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
71, 2, 3, 4, 5, 6abelthlem4 25173 . . 3 (𝜑𝐹:𝑆⟶ℂ)
81, 2, 3, 4, 5, 6abelthlem9 25179 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟))
91, 2, 3, 4, 5abelthlem2 25171 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
109simpld 498 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ 𝑆)
1110ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 1 ∈ 𝑆)
12 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 𝑦𝑆)
1311, 12ovresd 7325 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) = (1(abs ∘ − )𝑦))
14 ax-1cn 10666 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
155ssrab3 3969 . . . . . . . . . . . . . . . . 17 𝑆 ⊆ ℂ
1615, 12sseldi 3873 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 𝑦 ∈ ℂ)
17 eqid 2738 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) = (abs ∘ − )
1817cnmetdval 23516 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1(abs ∘ − )𝑦) = (abs‘(1 − 𝑦)))
1914, 16, 18sylancr 590 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (1(abs ∘ − )𝑦) = (abs‘(1 − 𝑦)))
2013, 19eqtrd 2773 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) = (abs‘(1 − 𝑦)))
2120breq1d 5037 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 ↔ (abs‘(1 − 𝑦)) < 𝑤))
227ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → 𝐹:𝑆⟶ℂ)
2322, 11ffvelrnd 6856 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (𝐹‘1) ∈ ℂ)
247adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑆⟶ℂ)
2524ffvelrnda 6855 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (𝐹𝑦) ∈ ℂ)
2617cnmetdval 23516 . . . . . . . . . . . . . . 15 (((𝐹‘1) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) = (abs‘((𝐹‘1) − (𝐹𝑦))))
2723, 25, 26syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) = (abs‘((𝐹‘1) − (𝐹𝑦))))
2827breq1d 5037 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟 ↔ (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟))
2921, 28imbi12d 348 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑆) → (((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟) ↔ ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟)))
3029ralbidva 3108 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (∀𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟) ↔ ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟)))
3130rexbidv 3206 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟) ↔ ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑟)))
328, 31mpbird 260 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))
3332ralrimiva 3096 . . . . . . . 8 (𝜑 → ∀𝑟 ∈ ℝ+𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))
34 cnxmet 23518 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
35 xmetres2 23107 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
3634, 15, 35mp2an 692 . . . . . . . . 9 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆)
37 eqid 2738 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
38 eqid 2738 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3938cnfldtopn 23527 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
40 eqid 2738 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
4137, 39, 40metrest 23270 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
4234, 15, 41mp2an 692 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
4342, 39metcnp 23287 . . . . . . . . 9 ((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ 𝑆) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑟 ∈ ℝ+𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))))
4436, 34, 10, 43mp3an12i 1466 . . . . . . . 8 (𝜑 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑟 ∈ ℝ+𝑤 ∈ ℝ+𝑦𝑆 ((1((abs ∘ − ) ↾ (𝑆 × 𝑆))𝑦) < 𝑤 → ((𝐹‘1)(abs ∘ − )(𝐹𝑦)) < 𝑟))))
457, 33, 44mpbir2and 713 . . . . . . 7 (𝜑𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1))
4645ad2antrr 726 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1))
47 simpr 488 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → 𝑦 = 1)
4847fveq2d 6672 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘1))
4946, 48eleqtrrd 2836 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑦 = 1) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
50 eldifsn 4672 . . . . . . 7 (𝑦 ∈ (𝑆 ∖ {1}) ↔ (𝑦𝑆𝑦 ≠ 1))
519simprd 499 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
52 abscl 14721 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (abs‘𝑤) ∈ ℝ)
5352adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → (abs‘𝑤) ∈ ℝ)
5453a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → (abs‘𝑤) ∈ ℝ))
55 absge0 14730 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → 0 ≤ (abs‘𝑤))
5655adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → 0 ≤ (abs‘𝑤))
5756a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → 0 ≤ (abs‘𝑤)))
581, 2abelthlem1 25170 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
5958adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6053rexrd 10762 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℂ) → (abs‘𝑤) ∈ ℝ*)
61 1re 10712 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
62 rexr 10758 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℝ → 1 ∈ ℝ*)
6361, 62mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℂ) → 1 ∈ ℝ*)
64 iccssxr 12897 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0[,]+∞) ⊆ ℝ*
65 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛)))) = (𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))
66 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
6765, 1, 66radcnvcl 25156 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
6864, 67sseldi 3873 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
6968adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℂ) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
70 xrltletr 12626 . . . . . . . . . . . . . . . . . . . . . . 23 (((abs‘𝑤) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) → (((abs‘𝑤) < 1 ∧ 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) → (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
7160, 63, 69, 70syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℂ) → (((abs‘𝑤) < 1 ∧ 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) → (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
7259, 71mpan2d 694 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
7354, 57, 723jcad 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) < 1 → ((abs‘𝑤) ∈ ℝ ∧ 0 ≤ (abs‘𝑤) ∧ (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
74 0cn 10704 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℂ
7517cnmetdval 23516 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (0(abs ∘ − )𝑤) = (abs‘(0 − 𝑤)))
7674, 75mpan 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (0(abs ∘ − )𝑤) = (abs‘(0 − 𝑤)))
77 abssub 14769 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(0 − 𝑤)) = (abs‘(𝑤 − 0)))
7874, 77mpan 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (abs‘(0 − 𝑤)) = (abs‘(𝑤 − 0)))
79 subid1 10977 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ ℂ → (𝑤 − 0) = 𝑤)
8079fveq2d 6672 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℂ → (abs‘(𝑤 − 0)) = (abs‘𝑤))
8176, 78, 803eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℂ → (0(abs ∘ − )𝑤) = (abs‘𝑤))
8281breq1d 5037 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℂ → ((0(abs ∘ − )𝑤) < 1 ↔ (abs‘𝑤) < 1))
8382adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℂ) → ((0(abs ∘ − )𝑤) < 1 ↔ (abs‘𝑤) < 1))
84 0re 10714 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ
85 elico2 12878 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) → ((abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑤) ∈ ℝ ∧ 0 ≤ (abs‘𝑤) ∧ (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
8684, 69, 85sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℂ) → ((abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑤) ∈ ℝ ∧ 0 ≤ (abs‘𝑤) ∧ (abs‘𝑤) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
8773, 83, 863imtr4d 297 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℂ) → ((0(abs ∘ − )𝑤) < 1 → (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
8887imdistanda 575 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑤 ∈ ℂ ∧ (0(abs ∘ − )𝑤) < 1) → (𝑤 ∈ ℂ ∧ (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))))
89 1xr 10771 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
90 elbl 23134 . . . . . . . . . . . . . . . . . . 19 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑤 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑤 ∈ ℂ ∧ (0(abs ∘ − )𝑤) < 1)))
9134, 74, 89, 90mp3an 1462 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑤 ∈ ℂ ∧ (0(abs ∘ − )𝑤) < 1))
92 absf 14780 . . . . . . . . . . . . . . . . . . 19 abs:ℂ⟶ℝ
93 ffn 6498 . . . . . . . . . . . . . . . . . . 19 (abs:ℂ⟶ℝ → abs Fn ℂ)
94 elpreima 6829 . . . . . . . . . . . . . . . . . . 19 (abs Fn ℂ → (𝑤 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑤 ∈ ℂ ∧ (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))))
9592, 93, 94mp2b 10 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑤 ∈ ℂ ∧ (abs‘𝑤) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
9688, 91, 953imtr4g 299 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (0(ball‘(abs ∘ − ))1) → 𝑤 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))))
9796ssrdv 3881 . . . . . . . . . . . . . . . 16 (𝜑 → (0(ball‘(abs ∘ − ))1) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
9851, 97sstrd 3885 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 ∖ {1}) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))))
9998resmptd 5876 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))))
1006reseq1i 5815 . . . . . . . . . . . . . . 15 (𝐹 ↾ (𝑆 ∖ {1})) = ((𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1}))
101 difss 4020 . . . . . . . . . . . . . . . 16 (𝑆 ∖ {1}) ⊆ 𝑆
102 resmpt 5873 . . . . . . . . . . . . . . . 16 ((𝑆 ∖ {1}) ⊆ 𝑆 → ((𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))))
103101, 102ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
104100, 103eqtri 2761 . . . . . . . . . . . . . 14 (𝐹 ↾ (𝑆 ∖ {1})) = (𝑥 ∈ (𝑆 ∖ {1}) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
10599, 104eqtr4di 2791 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) = (𝐹 ↾ (𝑆 ∖ {1})))
106 cnvimass 5917 . . . . . . . . . . . . . . . . . . 19 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ⊆ dom abs
10792fdmi 6510 . . . . . . . . . . . . . . . . . . 19 dom abs = ℂ
108106, 107sseqtri 3911 . . . . . . . . . . . . . . . . . 18 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ⊆ ℂ
109108sseli 3871 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) → 𝑥 ∈ ℂ)
110 fveq2 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
111 oveq2 7172 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝑥𝑛) = (𝑥𝑗))
112110, 111oveq12d 7182 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑗) · (𝑥𝑗)))
113112cbvsumv 15139 . . . . . . . . . . . . . . . . . 18 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) · (𝑥𝑗))
11465pserval2 25150 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗) = ((𝐴𝑗) · (𝑥𝑗)))
115114sumeq2dv 15146 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) · (𝑥𝑗)))
116113, 115eqtr4id 2792 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗))
117109, 116syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗))
118117mpteq2ia 5118 . . . . . . . . . . . . . . 15 (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) = (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑗 ∈ ℕ0 (((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑥)‘𝑗))
119 eqid 2738 . . . . . . . . . . . . . . 15 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) = (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))
120 eqid 2738 . . . . . . . . . . . . . . 15 if(sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑣) + sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑣) + 1)) = if(sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑣) + sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑣) + 1))
12165, 118, 1, 66, 119, 120psercn 25165 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ))
122 rescncf 23642 . . . . . . . . . . . . . 14 ((𝑆 ∖ {1}) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ) → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ)))
12398, 121, 122sylc 65 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑡 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑡𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ))
124105, 123eqeltrrd 2834 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ))
125124adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((𝑆 ∖ {1})–cn→ℂ))
126101, 15sstri 3884 . . . . . . . . . . . 12 (𝑆 ∖ {1}) ⊆ ℂ
127 ssid 3897 . . . . . . . . . . . 12 ℂ ⊆ ℂ
128 eqid 2738 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1}))
12938cnfldtopon 23528 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
130129toponrestid 21665 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
13138, 128, 130cncfcn 23655 . . . . . . . . . . . 12 (((𝑆 ∖ {1}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝑆 ∖ {1})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld)))
132126, 127, 131mp2an 692 . . . . . . . . . . 11 ((𝑆 ∖ {1})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld))
133125, 132eleqtrdi 2843 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld)))
134 simpr 488 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝑦 ∈ (𝑆 ∖ {1}))
135 resttopon 21905 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝑆 ∖ {1}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) ∈ (TopOn‘(𝑆 ∖ {1})))
136129, 126, 135mp2an 692 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) ∈ (TopOn‘(𝑆 ∖ {1}))
137136toponunii 21660 . . . . . . . . . . 11 (𝑆 ∖ {1}) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1}))
138137cncnpi 22022 . . . . . . . . . 10 (((𝐹 ↾ (𝑆 ∖ {1})) ∈ (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦))
139133, 134, 138syl2anc 587 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ ((((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦))
14038cnfldtop 23529 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
141 cnex 10689 . . . . . . . . . . . . 13 ℂ ∈ V
142141, 15ssexi 5187 . . . . . . . . . . . 12 𝑆 ∈ V
143 restabs 21909 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑆 ∖ {1}) ⊆ 𝑆𝑆 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})))
144140, 101, 142, 143mp3an 1462 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) = ((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1}))
145144oveq1i 7174 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))
146145fveq1i 6669 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦)
147139, 146eleqtrrdi 2844 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦))
148 resttop 21904 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
149140, 142, 148mp2an 692 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top
150149a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
151101a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝑆 ∖ {1}) ⊆ 𝑆)
15210snssd 4694 . . . . . . . . . . . . 13 (𝜑 → {1} ⊆ 𝑆)
15338cnfldhaus 23530 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Haus
154 unicntop 23531 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
155154sncld 22115 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ Haus ∧ 1 ∈ ℂ) → {1} ∈ (Clsd‘(TopOpen‘ℂfld)))
156153, 14, 155mp2an 692 . . . . . . . . . . . . . 14 {1} ∈ (Clsd‘(TopOpen‘ℂfld))
157154restcldi 21917 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ {1} ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ {1} ⊆ 𝑆) → {1} ∈ (Clsd‘((TopOpen‘ℂfld) ↾t 𝑆)))
15815, 156, 157mp3an12 1452 . . . . . . . . . . . . 13 ({1} ⊆ 𝑆 → {1} ∈ (Clsd‘((TopOpen‘ℂfld) ↾t 𝑆)))
159154restuni 21906 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
160140, 15, 159mp2an 692 . . . . . . . . . . . . . 14 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆)
161160cldopn 21775 . . . . . . . . . . . . 13 ({1} ∈ (Clsd‘((TopOpen‘ℂfld) ↾t 𝑆)) → (𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
162152, 158, 1613syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
163160isopn3 21810 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (𝑆 ∖ {1}) ⊆ 𝑆) → ((𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) = (𝑆 ∖ {1})))
164149, 101, 163mp2an 692 . . . . . . . . . . . 12 ((𝑆 ∖ {1}) ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) = (𝑆 ∖ {1}))
165162, 164sylib 221 . . . . . . . . . . 11 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) = (𝑆 ∖ {1}))
166165eleq2d 2818 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) ↔ 𝑦 ∈ (𝑆 ∖ {1})))
167166biimpar 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})))
1687adantr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝐹:𝑆⟶ℂ)
169160, 154cnprest 22033 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (𝑆 ∖ {1}) ⊆ 𝑆) ∧ (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(𝑆 ∖ {1})) ∧ 𝐹:𝑆⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦)))
170150, 151, 167, 168, 169syl22anc 838 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐹 ↾ (𝑆 ∖ {1})) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (𝑆 ∖ {1})) CnP (TopOpen‘ℂfld))‘𝑦)))
171147, 170mpbird 260 . . . . . . 7 ((𝜑𝑦 ∈ (𝑆 ∖ {1})) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
17250, 171sylan2br 598 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ 1)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
173172anassrs 471 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑦 ≠ 1) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
17449, 173pm2.61dane 3021 . . . 4 ((𝜑𝑦𝑆) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
175174ralrimiva 3096 . . 3 (𝜑 → ∀𝑦𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))
176 resttopon 21905 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
177129, 15, 176mp2an 692 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)
178 cncnp 22024 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑦𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦))))
179177, 129, 178mp2an 692 . . 3 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑦𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑦)))
1807, 175, 179sylanbrc 586 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
181 eqid 2738 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
18238, 181, 130cncfcn 23655 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
18315, 127, 182mp2an 692 . 2 (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
184180, 183eleqtrrdi 2844 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wral 3053  wrex 3054  {crab 3057  Vcvv 3397  cdif 3838  wss 3841  ifcif 4411  {csn 4513   cuni 4793   class class class wbr 5027  cmpt 5107   × cxp 5517  ccnv 5518  dom cdm 5519  cres 5521  cima 5522  ccom 5523   Fn wfn 6328  wf 6329  cfv 6333  (class class class)co 7164  supcsup 8970  cc 10606  cr 10607  0cc0 10608  1c1 10609   + caddc 10611   · cmul 10613  +∞cpnf 10743  *cxr 10745   < clt 10746  cle 10747  cmin 10941   / cdiv 11368  2c2 11764  0cn0 11969  +crp 12465  [,)cico 12816  [,]cicc 12817  seqcseq 13453  cexp 13514  abscabs 14676  cli 14924  Σcsu 15128  t crest 16790  TopOpenctopn 16791  ∞Metcxmet 20195  ballcbl 20197  MetOpencmopn 20200  fldccnfld 20210  Topctop 21637  TopOnctopon 21654  Clsdccld 21760  intcnt 21761   Cn ccn 21968   CnP ccnp 21969  Hauscha 22052  cnccncf 23621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686  ax-addf 10687  ax-mulf 10688
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-om 7594  df-1st 7707  df-2nd 7708  df-supp 7850  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-er 8313  df-map 8432  df-pm 8433  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fsupp 8900  df-fi 8941  df-sup 8972  df-inf 8973  df-oi 9040  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-ico 12820  df-icc 12821  df-fz 12975  df-fzo 13118  df-fl 13246  df-seq 13454  df-exp 13515  df-hash 13776  df-shft 14509  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-limsup 14911  df-clim 14928  df-rlim 14929  df-sum 15129  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-starv 16676  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-hom 16685  df-cco 16686  df-rest 16792  df-topn 16793  df-0g 16811  df-gsum 16812  df-topgen 16813  df-pt 16814  df-prds 16817  df-xrs 16871  df-qtop 16876  df-imas 16877  df-xps 16879  df-mre 16953  df-mrc 16954  df-acs 16956  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-mulg 18336  df-cntz 18558  df-cmn 19019  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-cnfld 20211  df-top 21638  df-topon 21655  df-topsp 21677  df-bases 21690  df-cld 21763  df-ntr 21764  df-cn 21971  df-cnp 21972  df-t1 22058  df-haus 22059  df-tx 22306  df-hmeo 22499  df-xms 23066  df-ms 23067  df-tms 23068  df-cncf 23623  df-ulm 25116
This theorem is referenced by:  abelth2  25181
  Copyright terms: Public domain W3C validator