MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem7 Structured version   Visualization version   GIF version

Theorem abelthlem7 25033
Description: Lemma for abelth 25036. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
abelthlem6.1 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
abelthlem7.2 (𝜑𝑅 ∈ ℝ+)
abelthlem7.3 (𝜑𝑁 ∈ ℕ0)
abelthlem7.4 (𝜑 → ∀𝑘 ∈ (ℤ𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅)
abelthlem7.5 (𝜑 → (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))
Assertion
Ref Expression
abelthlem7 (𝜑 → (abs‘(𝐹𝑋)) < ((𝑀 + 1) · 𝑅))
Distinct variable groups:   𝑘,𝑛,𝑥,𝑧,𝑀   𝑅,𝑘,𝑛,𝑥,𝑧   𝑘,𝑋,𝑛,𝑥,𝑧   𝐴,𝑘,𝑛,𝑥,𝑧   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛,𝑥   𝑆,𝑘,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑘,𝑛)   𝑁(𝑥,𝑧)

Proof of Theorem abelthlem7
StepHypRef Expression
1 abelth.1 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
2 abelth.2 . . . . 5 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
3 abelth.3 . . . . 5 (𝜑𝑀 ∈ ℝ)
4 abelth.4 . . . . 5 (𝜑 → 0 ≤ 𝑀)
5 abelth.5 . . . . 5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
6 abelth.6 . . . . 5 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
71, 2, 3, 4, 5, 6abelthlem4 25029 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
8 abelthlem6.1 . . . . 5 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
98eldifad 3893 . . . 4 (𝜑𝑋𝑆)
107, 9ffvelrnd 6829 . . 3 (𝜑 → (𝐹𝑋) ∈ ℂ)
1110abscld 14788 . 2 (𝜑 → (abs‘(𝐹𝑋)) ∈ ℝ)
12 ax-1cn 10584 . . . . . 6 1 ∈ ℂ
13 abelth.7 . . . . . . . 8 (𝜑 → seq0( + , 𝐴) ⇝ 0)
141, 2, 3, 4, 5, 6, 13, 8abelthlem7a 25032 . . . . . . 7 (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋)))))
1514simpld 498 . . . . . 6 (𝜑𝑋 ∈ ℂ)
16 subcl 10874 . . . . . 6 ((1 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (1 − 𝑋) ∈ ℂ)
1712, 15, 16sylancr 590 . . . . 5 (𝜑 → (1 − 𝑋) ∈ ℂ)
18 fzfid 13336 . . . . . 6 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
19 elfznn0 12995 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0)
20 nn0uz 12268 . . . . . . . . . 10 0 = (ℤ‘0)
21 0zd 11981 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
221ffvelrnda 6828 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
2320, 21, 22serf 13394 . . . . . . . . 9 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
2423ffvelrnda 6828 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) ∈ ℂ)
25 expcl 13443 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2615, 25sylan 583 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2724, 26mulcld 10650 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
2819, 27sylan2 595 . . . . . 6 ((𝜑𝑛 ∈ (0...(𝑁 − 1))) → ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
2918, 28fsumcl 15082 . . . . 5 (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
3017, 29mulcld 10650 . . . 4 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℂ)
3130abscld 14788 . . 3 (𝜑 → (abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) ∈ ℝ)
32 eqid 2798 . . . . . 6 (ℤ𝑁) = (ℤ𝑁)
33 abelthlem7.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
3433nn0zd 12073 . . . . . 6 (𝜑𝑁 ∈ ℤ)
35 eluznn0 12305 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℕ0)
3633, 35sylan 583 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℕ0)
37 fveq2 6645 . . . . . . . . 9 (𝑘 = 𝑛 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑛))
38 oveq2 7143 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑋𝑘) = (𝑋𝑛))
3937, 38oveq12d 7153 . . . . . . . 8 (𝑘 = 𝑛 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
40 eqid 2798 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
41 ovex 7168 . . . . . . . 8 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ V
4239, 40, 41fvmpt 6745 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
4336, 42syl 17 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
4436, 27syldan 594 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
451, 2, 3, 4, 5abelthlem2 25027 . . . . . . . . . 10 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
4645simprd 499 . . . . . . . . 9 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
4746, 8sseldd 3916 . . . . . . . 8 (𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1))
481, 2, 3, 4, 5, 6, 13abelthlem5 25030 . . . . . . . 8 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4947, 48mpdan 686 . . . . . . 7 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
5042adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
5150, 27eqeltrd 2890 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
5220, 33, 51iserex 15005 . . . . . . 7 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ ↔ seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ ))
5349, 52mpbid 235 . . . . . 6 (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
5432, 34, 43, 44, 53isumcl 15108 . . . . 5 (𝜑 → Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
5517, 54mulcld 10650 . . . 4 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℂ)
5655abscld 14788 . . 3 (𝜑 → (abs‘((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) ∈ ℝ)
5731, 56readdcld 10659 . 2 (𝜑 → ((abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))) ∈ ℝ)
58 peano2re 10802 . . . 4 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
593, 58syl 17 . . 3 (𝜑 → (𝑀 + 1) ∈ ℝ)
60 abelthlem7.2 . . . 4 (𝜑𝑅 ∈ ℝ+)
6160rpred 12419 . . 3 (𝜑𝑅 ∈ ℝ)
6259, 61remulcld 10660 . 2 (𝜑 → ((𝑀 + 1) · 𝑅) ∈ ℝ)
631, 2, 3, 4, 5, 6, 13, 8abelthlem6 25031 . . . . 5 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
6420, 32, 33, 50, 27, 49isumsplit 15187 . . . . . 6 (𝜑 → Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) = (Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) + Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
6564oveq2d 7151 . . . . 5 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = ((1 − 𝑋) · (Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) + Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
6617, 29, 54adddid 10654 . . . . 5 (𝜑 → ((1 − 𝑋) · (Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) + Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = (((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + ((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
6763, 65, 663eqtrd 2837 . . . 4 (𝜑 → (𝐹𝑋) = (((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + ((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
6867fveq2d 6649 . . 3 (𝜑 → (abs‘(𝐹𝑋)) = (abs‘(((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + ((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))))
6930, 55abstrid 14808 . . 3 (𝜑 → (abs‘(((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + ((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))) ≤ ((abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))))
7068, 69eqbrtrd 5052 . 2 (𝜑 → (abs‘(𝐹𝑋)) ≤ ((abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))))
713, 61remulcld 10660 . . . 4 (𝜑 → (𝑀 · 𝑅) ∈ ℝ)
7217abscld 14788 . . . . . 6 (𝜑 → (abs‘(1 − 𝑋)) ∈ ℝ)
7324abscld 14788 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℝ)
7419, 73sylan2 595 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑁 − 1))) → (abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℝ)
7518, 74fsumrecl 15083 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℝ)
76 peano2re 10802 . . . . . . 7 𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℝ → (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1) ∈ ℝ)
7775, 76syl 17 . . . . . 6 (𝜑 → (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1) ∈ ℝ)
7872, 77remulcld 10660 . . . . 5 (𝜑 → ((abs‘(1 − 𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) ∈ ℝ)
7917, 29absmuld 14806 . . . . . 6 (𝜑 → (abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = ((abs‘(1 − 𝑋)) · (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
8029abscld 14788 . . . . . . 7 (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℝ)
8117absge0d 14796 . . . . . . 7 (𝜑 → 0 ≤ (abs‘(1 − 𝑋)))
8227abscld 14788 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℝ)
8319, 82sylan2 595 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0...(𝑁 − 1))) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℝ)
8418, 83fsumrecl 15083 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℝ)
8518, 28fsumabs 15148 . . . . . . . . . 10 (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
8615abscld 14788 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘𝑋) ∈ ℝ)
87 reexpcl 13442 . . . . . . . . . . . . . . 15 (((abs‘𝑋) ∈ ℝ ∧ 𝑛 ∈ ℕ0) → ((abs‘𝑋)↑𝑛) ∈ ℝ)
8886, 87sylan 583 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((abs‘𝑋)↑𝑛) ∈ ℝ)
89 1red 10631 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 1 ∈ ℝ)
9024absge0d 14796 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (abs‘(seq0( + , 𝐴)‘𝑛)))
9186adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (abs‘𝑋) ∈ ℝ)
9215absge0d 14796 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘𝑋))
9392adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 0 ≤ (abs‘𝑋))
94 0cn 10622 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℂ
95 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) = (abs ∘ − )
9695cnmetdval 23376 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
9715, 94, 96sylancl 589 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
9815subid1d 10975 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑋 − 0) = 𝑋)
9998fveq2d 6649 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘(𝑋 − 0)) = (abs‘𝑋))
10097, 99eqtrd 2833 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋(abs ∘ − )0) = (abs‘𝑋))
101 cnxmet 23378 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) ∈ (∞Met‘ℂ)
102 1xr 10689 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ*
103 elbl3 22999 . . . . . . . . . . . . . . . . . . . . 21 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
104101, 102, 103mpanl12 701 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
10594, 15, 104sylancr 590 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
10647, 105mpbid 235 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋(abs ∘ − )0) < 1)
107100, 106eqbrtrrd 5054 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝑋) < 1)
108 1re 10630 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
109 ltle 10718 . . . . . . . . . . . . . . . . . 18 (((abs‘𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑋) < 1 → (abs‘𝑋) ≤ 1))
11086, 108, 109sylancl 589 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘𝑋) < 1 → (abs‘𝑋) ≤ 1))
111107, 110mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝑋) ≤ 1)
112111adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (abs‘𝑋) ≤ 1)
113 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
114 exple1 13536 . . . . . . . . . . . . . . 15 ((((abs‘𝑋) ∈ ℝ ∧ 0 ≤ (abs‘𝑋) ∧ (abs‘𝑋) ≤ 1) ∧ 𝑛 ∈ ℕ0) → ((abs‘𝑋)↑𝑛) ≤ 1)
11591, 93, 112, 113, 114syl31anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((abs‘𝑋)↑𝑛) ≤ 1)
11688, 89, 73, 90, 115lemul2ad 11569 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛)) ≤ ((abs‘(seq0( + , 𝐴)‘𝑛)) · 1))
11724, 26absmuld 14806 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = ((abs‘(seq0( + , 𝐴)‘𝑛)) · (abs‘(𝑋𝑛))))
118 absexp 14656 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (abs‘(𝑋𝑛)) = ((abs‘𝑋)↑𝑛))
11915, 118sylan 583 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (abs‘(𝑋𝑛)) = ((abs‘𝑋)↑𝑛))
120119oveq2d 7151 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((abs‘(seq0( + , 𝐴)‘𝑛)) · (abs‘(𝑋𝑛))) = ((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛)))
121117, 120eqtr2d 2834 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛)) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
12273recnd 10658 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℂ)
123122mulid1d 10647 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ((abs‘(seq0( + , 𝐴)‘𝑛)) · 1) = (abs‘(seq0( + , 𝐴)‘𝑛)))
124116, 121, 1233brtr3d 5061 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ (abs‘(seq0( + , 𝐴)‘𝑛)))
12519, 124sylan2 595 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0...(𝑁 − 1))) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ (abs‘(seq0( + , 𝐴)‘𝑛)))
12618, 83, 74, 125fsumle 15146 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)))
12780, 84, 75, 85, 126letrd 10786 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)))
12875ltp1d 11559 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) < (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))
12980, 75, 77, 127, 128lelttrd 10787 . . . . . . . 8 (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) < (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))
13080, 77, 129ltled 10777 . . . . . . 7 (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))
13180, 77, 72, 81, 130lemul2ad 11569 . . . . . 6 (𝜑 → ((abs‘(1 − 𝑋)) · (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) ≤ ((abs‘(1 − 𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))
13279, 131eqbrtrd 5052 . . . . 5 (𝜑 → (abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) ≤ ((abs‘(1 − 𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))
133 abelthlem7.5 . . . . . 6 (𝜑 → (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))
134 0red 10633 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
13519, 90sylan2 595 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...(𝑁 − 1))) → 0 ≤ (abs‘(seq0( + , 𝐴)‘𝑛)))
13618, 74, 135fsumge0 15142 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)))
137134, 75, 77, 136, 128lelttrd 10787 . . . . . . 7 (𝜑 → 0 < (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))
138 ltmuldiv 11502 . . . . . . 7 (((abs‘(1 − 𝑋)) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1) ∈ ℝ ∧ 0 < (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) → (((abs‘(1 − 𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) < 𝑅 ↔ (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))))
13972, 61, 77, 137, 138syl112anc 1371 . . . . . 6 (𝜑 → (((abs‘(1 − 𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) < 𝑅 ↔ (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))))
140133, 139mpbird 260 . . . . 5 (𝜑 → ((abs‘(1 − 𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) < 𝑅)
14131, 78, 61, 132, 140lelttrd 10787 . . . 4 (𝜑 → (abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) < 𝑅)
14217, 54absmuld 14806 . . . . 5 (𝜑 → (abs‘((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = ((abs‘(1 − 𝑋)) · (abs‘Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
14354abscld 14788 . . . . . . 7 (𝜑 → (abs‘Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℝ)
14439fveq2d 6649 . . . . . . . . . 10 (𝑘 = 𝑛 → (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
145 eqid 2798 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))
146 fvex 6658 . . . . . . . . . 10 (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ V
147144, 145, 146fvmpt 6745 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑛) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
14836, 147syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑛) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
14944abscld 14788 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℝ)
150 uzid 12246 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
15134, 150syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑁))
152 oveq2 7143 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((abs‘𝑋)↑𝑘) = ((abs‘𝑋)↑𝑛))
153 eqid 2798 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))
154 ovex 7168 . . . . . . . . . . . 12 ((abs‘𝑋)↑𝑛) ∈ V
155152, 153, 154fvmpt 6745 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))‘𝑛) = ((abs‘𝑋)↑𝑛))
15636, 155syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))‘𝑛) = ((abs‘𝑋)↑𝑛))
15736, 88syldan 594 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((abs‘𝑋)↑𝑛) ∈ ℝ)
158156, 157eqeltrd 2890 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))‘𝑛) ∈ ℝ)
159149recnd 10658 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℂ)
160148, 159eqeltrd 2890 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑛) ∈ ℂ)
16186recnd 10658 . . . . . . . . . . 11 (𝜑 → (abs‘𝑋) ∈ ℂ)
162 absidm 14675 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋))
16315, 162syl 17 . . . . . . . . . . . 12 (𝜑 → (abs‘(abs‘𝑋)) = (abs‘𝑋))
164163, 107eqbrtrd 5052 . . . . . . . . . . 11 (𝜑 → (abs‘(abs‘𝑋)) < 1)
165161, 164, 33, 156geolim2 15219 . . . . . . . . . 10 (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))) ⇝ (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))))
166 seqex 13366 . . . . . . . . . . 11 seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))) ∈ V
167 ovex 7168 . . . . . . . . . . 11 (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))) ∈ V
168166, 167breldm 5741 . . . . . . . . . 10 (seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))) ⇝ (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))) → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))) ∈ dom ⇝ )
169165, 168syl 17 . . . . . . . . 9 (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))) ∈ dom ⇝ )
170117, 120eqtrd 2833 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = ((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛)))
17136, 170syldan 594 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = ((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛)))
17236, 73syldan 594 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℝ)
17361adantr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑅 ∈ ℝ)
17486adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘𝑋) ∈ ℝ)
17592adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 0 ≤ (abs‘𝑋))
176174, 36, 175expge0d 13524 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → 0 ≤ ((abs‘𝑋)↑𝑛))
177 abelthlem7.4 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ (ℤ𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅)
17837fveq2d 6649 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (abs‘(seq0( + , 𝐴)‘𝑘)) = (abs‘(seq0( + , 𝐴)‘𝑛)))
179178breq1d 5040 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅 ↔ (abs‘(seq0( + , 𝐴)‘𝑛)) < 𝑅))
180179rspccva 3570 . . . . . . . . . . . . . 14 ((∀𝑘 ∈ (ℤ𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅𝑛 ∈ (ℤ𝑁)) → (abs‘(seq0( + , 𝐴)‘𝑛)) < 𝑅)
181177, 180sylan 583 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘(seq0( + , 𝐴)‘𝑛)) < 𝑅)
182172, 173, 181ltled 10777 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘(seq0( + , 𝐴)‘𝑛)) ≤ 𝑅)
183172, 173, 157, 176, 182lemul1ad 11568 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛)) ≤ (𝑅 · ((abs‘𝑋)↑𝑛)))
184171, 183eqbrtrd 5052 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ (𝑅 · ((abs‘𝑋)↑𝑛)))
185148fveq2d 6649 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘((𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑛)) = (abs‘(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
186 absidm 14675 . . . . . . . . . . . 12 (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ → (abs‘(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
18744, 186syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
188185, 187eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘((𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑛)) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
189156oveq2d 7151 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑅 · ((𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))‘𝑛)) = (𝑅 · ((abs‘𝑋)↑𝑛)))
190184, 188, 1893brtr4d 5062 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘((𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑛)) ≤ (𝑅 · ((𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))‘𝑛)))
19132, 151, 158, 160, 169, 61, 190cvgcmpce 15165 . . . . . . . 8 (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ∈ dom ⇝ )
19232, 34, 148, 149, 191isumrecl 15112 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (ℤ𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℝ)
193 eldifsni 4683 . . . . . . . . . . . 12 (𝑋 ∈ (𝑆 ∖ {1}) → 𝑋 ≠ 1)
1948, 193syl 17 . . . . . . . . . . 11 (𝜑𝑋 ≠ 1)
195194necomd 3042 . . . . . . . . . 10 (𝜑 → 1 ≠ 𝑋)
196 subeq0 10901 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((1 − 𝑋) = 0 ↔ 1 = 𝑋))
197196necon3bid 3031 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((1 − 𝑋) ≠ 0 ↔ 1 ≠ 𝑋))
19812, 15, 197sylancr 590 . . . . . . . . . 10 (𝜑 → ((1 − 𝑋) ≠ 0 ↔ 1 ≠ 𝑋))
199195, 198mpbird 260 . . . . . . . . 9 (𝜑 → (1 − 𝑋) ≠ 0)
20017, 199absrpcld 14800 . . . . . . . 8 (𝜑 → (abs‘(1 − 𝑋)) ∈ ℝ+)
20171, 200rerpdivcld 12450 . . . . . . 7 (𝜑 → ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))) ∈ ℝ)
20232, 34, 43, 44, 53isumclim2 15105 . . . . . . . 8 (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ⇝ Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
20332, 34, 148, 159, 191isumclim2 15105 . . . . . . . 8 (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ Σ𝑛 ∈ (ℤ𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
20436, 51syldan 594 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
20543fveq2d 6649 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛)) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
206148, 205eqtr4d 2836 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑛) = (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛)))
20732, 202, 203, 34, 204, 206iserabs 15162 . . . . . . 7 (𝜑 → (abs‘Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ Σ𝑛 ∈ (ℤ𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
20886, 33reexpcld 13523 . . . . . . . . . 10 (𝜑 → ((abs‘𝑋)↑𝑁) ∈ ℝ)
209 difrp 12415 . . . . . . . . . . . 12 (((abs‘𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑋) < 1 ↔ (1 − (abs‘𝑋)) ∈ ℝ+))
21086, 108, 209sylancl 589 . . . . . . . . . . 11 (𝜑 → ((abs‘𝑋) < 1 ↔ (1 − (abs‘𝑋)) ∈ ℝ+))
211107, 210mpbid 235 . . . . . . . . . 10 (𝜑 → (1 − (abs‘𝑋)) ∈ ℝ+)
212208, 211rerpdivcld 12450 . . . . . . . . 9 (𝜑 → (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))) ∈ ℝ)
21361, 212remulcld 10660 . . . . . . . 8 (𝜑 → (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) ∈ ℝ)
214152oveq2d 7151 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑅 · ((abs‘𝑋)↑𝑘)) = (𝑅 · ((abs‘𝑋)↑𝑛)))
215 eqid 2798 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘))) = (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))
216 ovex 7168 . . . . . . . . . . . 12 (𝑅 · ((abs‘𝑋)↑𝑛)) ∈ V
217214, 215, 216fvmpt 6745 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))‘𝑛) = (𝑅 · ((abs‘𝑋)↑𝑛)))
21836, 217syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))‘𝑛) = (𝑅 · ((abs‘𝑋)↑𝑛)))
219173, 157remulcld 10660 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑅 · ((abs‘𝑋)↑𝑛)) ∈ ℝ)
22060rpcnd 12421 . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℂ)
221158recnd 10658 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))‘𝑛) ∈ ℂ)
222218, 189eqtr4d 2836 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))‘𝑛) = (𝑅 · ((𝑘 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑘))‘𝑛)))
22332, 34, 220, 165, 221, 222isermulc2 15006 . . . . . . . . . . 11 (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ⇝ (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))))
224 seqex 13366 . . . . . . . . . . . 12 seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ∈ V
225 ovex 7168 . . . . . . . . . . . 12 (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) ∈ V
226224, 225breldm 5741 . . . . . . . . . . 11 (seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ⇝ (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ∈ dom ⇝ )
227223, 226syl 17 . . . . . . . . . 10 (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ∈ dom ⇝ )
22832, 34, 148, 149, 218, 219, 184, 191, 227isumle 15191 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (ℤ𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ Σ𝑛 ∈ (ℤ𝑁)(𝑅 · ((abs‘𝑋)↑𝑛)))
229219recnd 10658 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑅 · ((abs‘𝑋)↑𝑛)) ∈ ℂ)
23032, 34, 218, 229, 223isumclim 15104 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (ℤ𝑁)(𝑅 · ((abs‘𝑋)↑𝑛)) = (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))))
231228, 230breqtrd 5056 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (ℤ𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))))
23260, 211rpdivcld 12436 . . . . . . . . . 10 (𝜑 → (𝑅 / (1 − (abs‘𝑋))) ∈ ℝ+)
233232rpred 12419 . . . . . . . . 9 (𝜑 → (𝑅 / (1 − (abs‘𝑋))) ∈ ℝ)
234208recnd 10658 . . . . . . . . . . 11 (𝜑 → ((abs‘𝑋)↑𝑁) ∈ ℂ)
235211rpcnd 12421 . . . . . . . . . . 11 (𝜑 → (1 − (abs‘𝑋)) ∈ ℂ)
236211rpne0d 12424 . . . . . . . . . . 11 (𝜑 → (1 − (abs‘𝑋)) ≠ 0)
237220, 234, 235, 236div12d 11441 . . . . . . . . . 10 (𝜑 → (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) = (((abs‘𝑋)↑𝑁) · (𝑅 / (1 − (abs‘𝑋)))))
238 1red 10631 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
239232rpge0d 12423 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑅 / (1 − (abs‘𝑋))))
240 exple1 13536 . . . . . . . . . . . . 13 ((((abs‘𝑋) ∈ ℝ ∧ 0 ≤ (abs‘𝑋) ∧ (abs‘𝑋) ≤ 1) ∧ 𝑁 ∈ ℕ0) → ((abs‘𝑋)↑𝑁) ≤ 1)
24186, 92, 111, 33, 240syl31anc 1370 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑋)↑𝑁) ≤ 1)
242208, 238, 233, 239, 241lemul1ad 11568 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑋)↑𝑁) · (𝑅 / (1 − (abs‘𝑋)))) ≤ (1 · (𝑅 / (1 − (abs‘𝑋)))))
243232rpcnd 12421 . . . . . . . . . . . 12 (𝜑 → (𝑅 / (1 − (abs‘𝑋))) ∈ ℂ)
244243mulid2d 10648 . . . . . . . . . . 11 (𝜑 → (1 · (𝑅 / (1 − (abs‘𝑋)))) = (𝑅 / (1 − (abs‘𝑋))))
245242, 244breqtrd 5056 . . . . . . . . . 10 (𝜑 → (((abs‘𝑋)↑𝑁) · (𝑅 / (1 − (abs‘𝑋)))) ≤ (𝑅 / (1 − (abs‘𝑋))))
246237, 245eqbrtrd 5052 . . . . . . . . 9 (𝜑 → (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) ≤ (𝑅 / (1 − (abs‘𝑋))))
24714simprd 499 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))
248 resubcl 10939 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (1 − (abs‘𝑋)) ∈ ℝ)
249108, 86, 248sylancr 590 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − (abs‘𝑋)) ∈ ℝ)
2503, 249remulcld 10660 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 · (1 − (abs‘𝑋))) ∈ ℝ)
25172, 250, 60lemul2d 12463 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))) ↔ (𝑅 · (abs‘(1 − 𝑋))) ≤ (𝑅 · (𝑀 · (1 − (abs‘𝑋))))))
252247, 251mpbid 235 . . . . . . . . . . . . 13 (𝜑 → (𝑅 · (abs‘(1 − 𝑋))) ≤ (𝑅 · (𝑀 · (1 − (abs‘𝑋)))))
2533recnd 10658 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℂ)
254220, 253, 235mul12d 10838 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 · (𝑀 · (1 − (abs‘𝑋)))) = (𝑀 · (𝑅 · (1 − (abs‘𝑋)))))
255220, 235mulcomd 10651 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 · (1 − (abs‘𝑋))) = ((1 − (abs‘𝑋)) · 𝑅))
256255oveq2d 7151 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · (𝑅 · (1 − (abs‘𝑋)))) = (𝑀 · ((1 − (abs‘𝑋)) · 𝑅)))
257253, 235, 220mul12d 10838 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · ((1 − (abs‘𝑋)) · 𝑅)) = ((1 − (abs‘𝑋)) · (𝑀 · 𝑅)))
258254, 256, 2573eqtrd 2837 . . . . . . . . . . . . 13 (𝜑 → (𝑅 · (𝑀 · (1 − (abs‘𝑋)))) = ((1 − (abs‘𝑋)) · (𝑀 · 𝑅)))
259252, 258breqtrd 5056 . . . . . . . . . . . 12 (𝜑 → (𝑅 · (abs‘(1 − 𝑋))) ≤ ((1 − (abs‘𝑋)) · (𝑀 · 𝑅)))
260249, 71remulcld 10660 . . . . . . . . . . . . 13 (𝜑 → ((1 − (abs‘𝑋)) · (𝑀 · 𝑅)) ∈ ℝ)
26161, 260, 200lemuldivd 12468 . . . . . . . . . . . 12 (𝜑 → ((𝑅 · (abs‘(1 − 𝑋))) ≤ ((1 − (abs‘𝑋)) · (𝑀 · 𝑅)) ↔ 𝑅 ≤ (((1 − (abs‘𝑋)) · (𝑀 · 𝑅)) / (abs‘(1 − 𝑋)))))
262259, 261mpbid 235 . . . . . . . . . . 11 (𝜑𝑅 ≤ (((1 − (abs‘𝑋)) · (𝑀 · 𝑅)) / (abs‘(1 − 𝑋))))
26371recnd 10658 . . . . . . . . . . . 12 (𝜑 → (𝑀 · 𝑅) ∈ ℂ)
26472recnd 10658 . . . . . . . . . . . 12 (𝜑 → (abs‘(1 − 𝑋)) ∈ ℂ)
265200rpne0d 12424 . . . . . . . . . . . 12 (𝜑 → (abs‘(1 − 𝑋)) ≠ 0)
266235, 263, 264, 265divassd 11440 . . . . . . . . . . 11 (𝜑 → (((1 − (abs‘𝑋)) · (𝑀 · 𝑅)) / (abs‘(1 − 𝑋))) = ((1 − (abs‘𝑋)) · ((𝑀 · 𝑅) / (abs‘(1 − 𝑋)))))
267262, 266breqtrd 5056 . . . . . . . . . 10 (𝜑𝑅 ≤ ((1 − (abs‘𝑋)) · ((𝑀 · 𝑅) / (abs‘(1 − 𝑋)))))
268 posdif 11122 . . . . . . . . . . . . 13 (((abs‘𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑋) < 1 ↔ 0 < (1 − (abs‘𝑋))))
26986, 108, 268sylancl 589 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑋) < 1 ↔ 0 < (1 − (abs‘𝑋))))
270107, 269mpbid 235 . . . . . . . . . . 11 (𝜑 → 0 < (1 − (abs‘𝑋)))
271 ledivmul 11505 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))) ∈ ℝ ∧ ((1 − (abs‘𝑋)) ∈ ℝ ∧ 0 < (1 − (abs‘𝑋)))) → ((𝑅 / (1 − (abs‘𝑋))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))) ↔ 𝑅 ≤ ((1 − (abs‘𝑋)) · ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))))))
27261, 201, 249, 270, 271syl112anc 1371 . . . . . . . . . 10 (𝜑 → ((𝑅 / (1 − (abs‘𝑋))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))) ↔ 𝑅 ≤ ((1 − (abs‘𝑋)) · ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))))))
273267, 272mpbird 260 . . . . . . . . 9 (𝜑 → (𝑅 / (1 − (abs‘𝑋))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))))
274213, 233, 201, 246, 273letrd 10786 . . . . . . . 8 (𝜑 → (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))))
275192, 213, 201, 231, 274letrd 10786 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (ℤ𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))))
276143, 192, 201, 207, 275letrd 10786 . . . . . 6 (𝜑 → (abs‘Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))))
277143, 71, 200lemuldiv2d 12469 . . . . . 6 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) ≤ (𝑀 · 𝑅) ↔ (abs‘Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋)))))
278276, 277mpbird 260 . . . . 5 (𝜑 → ((abs‘(1 − 𝑋)) · (abs‘Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) ≤ (𝑀 · 𝑅))
279142, 278eqbrtrd 5052 . . . 4 (𝜑 → (abs‘((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) ≤ (𝑀 · 𝑅))
28031, 56, 61, 71, 141, 279ltleaddd 11250 . . 3 (𝜑 → ((abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))) < (𝑅 + (𝑀 · 𝑅)))
281 1cnd 10625 . . . . 5 (𝜑 → 1 ∈ ℂ)
282253, 281, 220adddird 10655 . . . 4 (𝜑 → ((𝑀 + 1) · 𝑅) = ((𝑀 · 𝑅) + (1 · 𝑅)))
283220mulid2d 10648 . . . . 5 (𝜑 → (1 · 𝑅) = 𝑅)
284283oveq2d 7151 . . . 4 (𝜑 → ((𝑀 · 𝑅) + (1 · 𝑅)) = ((𝑀 · 𝑅) + 𝑅))
285263, 220addcomd 10831 . . . 4 (𝜑 → ((𝑀 · 𝑅) + 𝑅) = (𝑅 + (𝑀 · 𝑅)))
286282, 284, 2853eqtrd 2837 . . 3 (𝜑 → ((𝑀 + 1) · 𝑅) = (𝑅 + (𝑀 · 𝑅)))
287280, 286breqtrrd 5058 . 2 (𝜑 → ((abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈ (ℤ𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))) < ((𝑀 + 1) · 𝑅))
28811, 57, 62, 70, 287lelttrd 10787 1 (𝜑 → (abs‘(𝐹𝑋)) < ((𝑀 + 1) · 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  cdif 3878  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  dom cdm 5519  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  seqcseq 13364  cexp 13425  abscabs 14585  cli 14833  Σcsu 15034  ∞Metcxmet 20076  ballcbl 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086
This theorem is referenced by:  abelthlem8  25034
  Copyright terms: Public domain W3C validator