MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo3f Structured version   Visualization version   GIF version

Theorem dffo3f 7140
Description: An onto mapping expressed in terms of function values. As dffo3 7136 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
dffo3f.1 𝑥𝐹
Assertion
Ref Expression
dffo3f (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dffo3f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dffo2 6838 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
2 ffn 6747 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 fnrnfv 6981 . . . . . . 7 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑤𝐴 𝑦 = (𝐹𝑤)})
4 dffo3f.1 . . . . . . . . . . 11 𝑥𝐹
5 nfcv 2908 . . . . . . . . . . 11 𝑥𝑤
64, 5nffv 6930 . . . . . . . . . 10 𝑥(𝐹𝑤)
76nfeq2 2926 . . . . . . . . 9 𝑥 𝑦 = (𝐹𝑤)
8 nfv 1913 . . . . . . . . 9 𝑤 𝑦 = (𝐹𝑥)
9 fveq2 6920 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
109eqeq2d 2751 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦 = (𝐹𝑤) ↔ 𝑦 = (𝐹𝑥)))
117, 8, 10cbvrexw 3313 . . . . . . . 8 (∃𝑤𝐴 𝑦 = (𝐹𝑤) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥))
1211abbii 2812 . . . . . . 7 {𝑦 ∣ ∃𝑤𝐴 𝑦 = (𝐹𝑤)} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
133, 12eqtrdi 2796 . . . . . 6 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
1413eqeq1d 2742 . . . . 5 (𝐹 Fn 𝐴 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵))
152, 14syl 17 . . . 4 (𝐹:𝐴𝐵 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵))
16 dfbi2 474 . . . . . . 7 ((∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ ((∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵) ∧ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
17 nfcv 2908 . . . . . . . . . 10 𝑥𝐴
18 nfcv 2908 . . . . . . . . . 10 𝑥𝐵
194, 17, 18nff 6743 . . . . . . . . 9 𝑥 𝐹:𝐴𝐵
20 nfv 1913 . . . . . . . . 9 𝑥 𝑦𝐵
21 simpr 484 . . . . . . . . . . 11 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
22 ffvelcdm 7115 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
2322adantr 480 . . . . . . . . . . 11 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → (𝐹𝑥) ∈ 𝐵)
2421, 23eqeltrd 2844 . . . . . . . . . 10 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦𝐵)
2524exp31 419 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝑥𝐴 → (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
2619, 20, 25rexlimd 3272 . . . . . . . 8 (𝐹:𝐴𝐵 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵))
2726biantrurd 532 . . . . . . 7 (𝐹:𝐴𝐵 → ((𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)) ↔ ((∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵) ∧ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))))
2816, 27bitr4id 290 . . . . . 6 (𝐹:𝐴𝐵 → ((∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
2928albidv 1919 . . . . 5 (𝐹:𝐴𝐵 → (∀𝑦(∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ ∀𝑦(𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
30 eqabcb 2886 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵 ↔ ∀𝑦(∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵))
31 df-ral 3068 . . . . 5 (∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∀𝑦(𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
3229, 30, 313bitr4g 314 . . . 4 (𝐹:𝐴𝐵 → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
3315, 32bitrd 279 . . 3 (𝐹:𝐴𝐵 → (ran 𝐹 = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
3433pm5.32i 574 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
351, 34bitri 275 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wnfc 2893  wral 3067  wrex 3076  ran crn 5701   Fn wfn 6568  wf 6569  ontowfo 6571  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581
This theorem is referenced by:  foelrnf  7142  fompt  7152
  Copyright terms: Public domain W3C validator