Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffo3f Structured version   Visualization version   GIF version

Theorem dffo3f 43388
Description: An onto mapping expressed in terms of function values. As dffo3 7052 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
dffo3f.1 𝑥𝐹
Assertion
Ref Expression
dffo3f (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dffo3f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dffo2 6760 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
2 ffn 6668 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 fnrnfv 6902 . . . . . . 7 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑤𝐴 𝑦 = (𝐹𝑤)})
4 dffo3f.1 . . . . . . . . . . 11 𝑥𝐹
5 nfcv 2907 . . . . . . . . . . 11 𝑥𝑤
64, 5nffv 6852 . . . . . . . . . 10 𝑥(𝐹𝑤)
76nfeq2 2924 . . . . . . . . 9 𝑥 𝑦 = (𝐹𝑤)
8 nfv 1917 . . . . . . . . 9 𝑤 𝑦 = (𝐹𝑥)
9 fveq2 6842 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
109eqeq2d 2747 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦 = (𝐹𝑤) ↔ 𝑦 = (𝐹𝑥)))
117, 8, 10cbvrexw 3290 . . . . . . . 8 (∃𝑤𝐴 𝑦 = (𝐹𝑤) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥))
1211abbii 2806 . . . . . . 7 {𝑦 ∣ ∃𝑤𝐴 𝑦 = (𝐹𝑤)} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
133, 12eqtrdi 2792 . . . . . 6 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
1413eqeq1d 2738 . . . . 5 (𝐹 Fn 𝐴 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵))
152, 14syl 17 . . . 4 (𝐹:𝐴𝐵 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵))
16 dfbi2 475 . . . . . . 7 ((∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ ((∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵) ∧ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
17 nfcv 2907 . . . . . . . . . 10 𝑥𝐴
18 nfcv 2907 . . . . . . . . . 10 𝑥𝐵
194, 17, 18nff 6664 . . . . . . . . 9 𝑥 𝐹:𝐴𝐵
20 nfv 1917 . . . . . . . . 9 𝑥 𝑦𝐵
21 simpr 485 . . . . . . . . . 10 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
22 ffvelcdm 7032 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
2322adantr 481 . . . . . . . . . 10 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → (𝐹𝑥) ∈ 𝐵)
2421, 23eqeltrd 2838 . . . . . . . . 9 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦𝐵)
2519, 20, 24rexlimd3 43344 . . . . . . . 8 (𝐹:𝐴𝐵 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵))
2625biantrurd 533 . . . . . . 7 (𝐹:𝐴𝐵 → ((𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)) ↔ ((∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵) ∧ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))))
2716, 26bitr4id 289 . . . . . 6 (𝐹:𝐴𝐵 → ((∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
2827albidv 1923 . . . . 5 (𝐹:𝐴𝐵 → (∀𝑦(∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ ∀𝑦(𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
29 eqabc 2879 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵 ↔ ∀𝑦(∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵))
30 df-ral 3065 . . . . 5 (∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∀𝑦(𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
3128, 29, 303bitr4g 313 . . . 4 (𝐹:𝐴𝐵 → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
3215, 31bitrd 278 . . 3 (𝐹:𝐴𝐵 → (ran 𝐹 = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
3332pm5.32i 575 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
341, 33bitri 274 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  {cab 2713  wnfc 2887  wral 3064  wrex 3073  ran crn 5634   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fo 6502  df-fv 6504
This theorem is referenced by:  foelrnf  43395  fompt  43401
  Copyright terms: Public domain W3C validator