Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffo3f Structured version   Visualization version   GIF version

Theorem dffo3f 42717
Description: An onto mapping expressed in terms of function values. As dffo3 6978 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
dffo3f.1 𝑥𝐹
Assertion
Ref Expression
dffo3f (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dffo3f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dffo2 6692 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
2 ffn 6600 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 fnrnfv 6829 . . . . . . 7 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑤𝐴 𝑦 = (𝐹𝑤)})
4 dffo3f.1 . . . . . . . . . . 11 𝑥𝐹
5 nfcv 2907 . . . . . . . . . . 11 𝑥𝑤
64, 5nffv 6784 . . . . . . . . . 10 𝑥(𝐹𝑤)
76nfeq2 2924 . . . . . . . . 9 𝑥 𝑦 = (𝐹𝑤)
8 nfv 1917 . . . . . . . . 9 𝑤 𝑦 = (𝐹𝑥)
9 fveq2 6774 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
109eqeq2d 2749 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦 = (𝐹𝑤) ↔ 𝑦 = (𝐹𝑥)))
117, 8, 10cbvrexw 3374 . . . . . . . 8 (∃𝑤𝐴 𝑦 = (𝐹𝑤) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥))
1211abbii 2808 . . . . . . 7 {𝑦 ∣ ∃𝑤𝐴 𝑦 = (𝐹𝑤)} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
133, 12eqtrdi 2794 . . . . . 6 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
1413eqeq1d 2740 . . . . 5 (𝐹 Fn 𝐴 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵))
152, 14syl 17 . . . 4 (𝐹:𝐴𝐵 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵))
16 dfbi2 475 . . . . . . 7 ((∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ ((∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵) ∧ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
17 nfcv 2907 . . . . . . . . . 10 𝑥𝐴
18 nfcv 2907 . . . . . . . . . 10 𝑥𝐵
194, 17, 18nff 6596 . . . . . . . . 9 𝑥 𝐹:𝐴𝐵
20 nfv 1917 . . . . . . . . 9 𝑥 𝑦𝐵
21 simpr 485 . . . . . . . . . 10 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
22 ffvelrn 6959 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
2322adantr 481 . . . . . . . . . 10 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → (𝐹𝑥) ∈ 𝐵)
2421, 23eqeltrd 2839 . . . . . . . . 9 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦𝐵)
2519, 20, 24rexlimd3 42693 . . . . . . . 8 (𝐹:𝐴𝐵 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵))
2625biantrurd 533 . . . . . . 7 (𝐹:𝐴𝐵 → ((𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)) ↔ ((∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵) ∧ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))))
2716, 26bitr4id 290 . . . . . 6 (𝐹:𝐴𝐵 → ((∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
2827albidv 1923 . . . . 5 (𝐹:𝐴𝐵 → (∀𝑦(∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ ∀𝑦(𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
29 abeq1 2873 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵 ↔ ∀𝑦(∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵))
30 df-ral 3069 . . . . 5 (∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∀𝑦(𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
3128, 29, 303bitr4g 314 . . . 4 (𝐹:𝐴𝐵 → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
3215, 31bitrd 278 . . 3 (𝐹:𝐴𝐵 → (ran 𝐹 = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
3332pm5.32i 575 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
341, 33bitri 274 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wnfc 2887  wral 3064  wrex 3065  ran crn 5590   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441
This theorem is referenced by:  foelrnf  42724  fompt  42730
  Copyright terms: Public domain W3C validator