Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon3 Structured version   Visualization version   GIF version

Theorem dfon3 35360
Description: A quantifier-free definition of On. (Contributed by Scott Fenton, 5-Apr-2012.)
Assertion
Ref Expression
dfon3 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))

Proof of Theorem dfon3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfon2 35260 . 2 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
2 eqabcb 2867 . . 3 ({𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ∀𝑥(∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))))
3 vex 3470 . . . . . . 7 𝑥 ∈ V
43elrn 5884 . . . . . 6 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥)
5 brin 5191 . . . . . . . . . . 11 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦 SSet 𝑥𝑦( Trans × V)𝑥))
63brsset 35357 . . . . . . . . . . . 12 (𝑦 SSet 𝑥𝑦𝑥)
7 brxp 5716 . . . . . . . . . . . . . 14 (𝑦( Trans × V)𝑥 ↔ (𝑦 Trans 𝑥 ∈ V))
83, 7mpbiran2 707 . . . . . . . . . . . . 13 (𝑦( Trans × V)𝑥𝑦 Trans )
9 vex 3470 . . . . . . . . . . . . . 14 𝑦 ∈ V
109eltrans 35359 . . . . . . . . . . . . 13 (𝑦 Trans ↔ Tr 𝑦)
118, 10bitri 275 . . . . . . . . . . . 12 (𝑦( Trans × V)𝑥 ↔ Tr 𝑦)
126, 11anbi12i 626 . . . . . . . . . . 11 ((𝑦 SSet 𝑥𝑦( Trans × V)𝑥) ↔ (𝑦𝑥 ∧ Tr 𝑦))
135, 12bitri 275 . . . . . . . . . 10 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦𝑥 ∧ Tr 𝑦))
14 ioran 980 . . . . . . . . . . 11 (¬ (𝑦 = 𝑥𝑦𝑥) ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
15 brun 5190 . . . . . . . . . . . 12 (𝑦( I ∪ E )𝑥 ↔ (𝑦 I 𝑥𝑦 E 𝑥))
163ideq 5843 . . . . . . . . . . . . 13 (𝑦 I 𝑥𝑦 = 𝑥)
17 epel 5574 . . . . . . . . . . . . 13 (𝑦 E 𝑥𝑦𝑥)
1816, 17orbi12i 911 . . . . . . . . . . . 12 ((𝑦 I 𝑥𝑦 E 𝑥) ↔ (𝑦 = 𝑥𝑦𝑥))
1915, 18bitri 275 . . . . . . . . . . 11 (𝑦( I ∪ E )𝑥 ↔ (𝑦 = 𝑥𝑦𝑥))
2014, 19xchnxbir 333 . . . . . . . . . 10 𝑦( I ∪ E )𝑥 ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
2113, 20anbi12i 626 . . . . . . . . 9 ((𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
22 brdif 5192 . . . . . . . . 9 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ (𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥))
23 dfpss2 4078 . . . . . . . . . . . . 13 (𝑦𝑥 ↔ (𝑦𝑥 ∧ ¬ 𝑦 = 𝑥))
2423anbi1i 623 . . . . . . . . . . . 12 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦))
25 an32 643 . . . . . . . . . . . 12 (((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2624, 25bitri 275 . . . . . . . . . . 11 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2726anbi1i 623 . . . . . . . . . 10 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥))
28 anass 468 . . . . . . . . . 10 ((((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
2927, 28bitri 275 . . . . . . . . 9 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
3021, 22, 293bitr4i 303 . . . . . . . 8 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
3130exbii 1842 . . . . . . 7 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
32 exanali 1854 . . . . . . 7 (∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3331, 32bitri 275 . . . . . 6 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
344, 33bitri 275 . . . . 5 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3534con2bii 357 . . . 4 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
36 eldif 3951 . . . . 5 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
373, 36mpbiran 706 . . . 4 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
3835, 37bitr4i 278 . . 3 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
392, 38mpgbir 1793 . 2 {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
401, 39eqtri 2752 1 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  wal 1531   = wceq 1533  wex 1773  wcel 2098  {cab 2701  Vcvv 3466  cdif 3938  cun 3939  cin 3940  wss 3941  wpss 3942   class class class wbr 5139  Tr wtr 5256   I cid 5564   E cep 5570   × cxp 5665  ran crn 5668  Oncon0 6355   SSet csset 35300   Trans ctrans 35301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fo 6540  df-fv 6542  df-1st 7969  df-2nd 7970  df-txp 35322  df-sset 35324  df-trans 35325
This theorem is referenced by:  dfon4  35361
  Copyright terms: Public domain W3C validator