Step | Hyp | Ref
| Expression |
1 | | dfon2 33674 |
. 2
⊢ On =
{𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} |
2 | | abeq1 2872 |
. . 3
⊢ ({𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} = (V ∖ ran ((
SSet ∩ ( Trans × V)) ∖ (
I ∪ E ))) ↔ ∀𝑥(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E ))))) |
3 | | vex 3426 |
. . . . . . 7
⊢ 𝑥 ∈ V |
4 | 3 | elrn 5791 |
. . . . . 6
⊢ (𝑥 ∈ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E )) ↔ ∃𝑦 𝑦(( SSet ∩
( Trans × V)) ∖ ( I ∪ E ))𝑥) |
5 | | brin 5122 |
. . . . . . . . . . 11
⊢ (𝑦( SSet
∩ ( Trans × V))𝑥 ↔ (𝑦 SSet 𝑥 ∧ 𝑦( Trans ×
V)𝑥)) |
6 | 3 | brsset 34118 |
. . . . . . . . . . . 12
⊢ (𝑦 SSet
𝑥 ↔ 𝑦 ⊆ 𝑥) |
7 | | brxp 5627 |
. . . . . . . . . . . . . 14
⊢ (𝑦( Trans
× V)𝑥 ↔
(𝑦 ∈ Trans ∧ 𝑥 ∈ V)) |
8 | 3, 7 | mpbiran2 706 |
. . . . . . . . . . . . 13
⊢ (𝑦( Trans
× V)𝑥 ↔
𝑦 ∈ Trans ) |
9 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
10 | 9 | eltrans 34120 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
Trans ↔ Tr 𝑦) |
11 | 8, 10 | bitri 274 |
. . . . . . . . . . . 12
⊢ (𝑦( Trans
× V)𝑥 ↔
Tr 𝑦) |
12 | 6, 11 | anbi12i 626 |
. . . . . . . . . . 11
⊢ ((𝑦 SSet
𝑥 ∧ 𝑦( Trans
× V)𝑥) ↔
(𝑦 ⊆ 𝑥 ∧ Tr 𝑦)) |
13 | 5, 12 | bitri 274 |
. . . . . . . . . 10
⊢ (𝑦( SSet
∩ ( Trans × V))𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ Tr 𝑦)) |
14 | | ioran 980 |
. . . . . . . . . . 11
⊢ (¬
(𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥) ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥)) |
15 | | brun 5121 |
. . . . . . . . . . . 12
⊢ (𝑦( I ∪ E )𝑥 ↔ (𝑦 I 𝑥 ∨ 𝑦 E 𝑥)) |
16 | 3 | ideq 5750 |
. . . . . . . . . . . . 13
⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
17 | | epel 5489 |
. . . . . . . . . . . . 13
⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) |
18 | 16, 17 | orbi12i 911 |
. . . . . . . . . . . 12
⊢ ((𝑦 I 𝑥 ∨ 𝑦 E 𝑥) ↔ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥)) |
19 | 15, 18 | bitri 274 |
. . . . . . . . . . 11
⊢ (𝑦( I ∪ E )𝑥 ↔ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥)) |
20 | 14, 19 | xchnxbir 332 |
. . . . . . . . . 10
⊢ (¬
𝑦( I ∪ E )𝑥 ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥)) |
21 | 13, 20 | anbi12i 626 |
. . . . . . . . 9
⊢ ((𝑦( SSet
∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥))) |
22 | | brdif 5123 |
. . . . . . . . 9
⊢ (𝑦(( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))𝑥 ↔ (𝑦( SSet
∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥)) |
23 | | dfpss2 4016 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊊ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ ¬ 𝑦 = 𝑥)) |
24 | 23 | anbi1i 623 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ↔ ((𝑦 ⊆ 𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦)) |
25 | | an32 642 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊆ 𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥)) |
26 | 24, 25 | bitri 274 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥)) |
27 | 26 | anbi1i 623 |
. . . . . . . . . 10
⊢ (((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥) ↔ (((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦 ∈ 𝑥)) |
28 | | anass 468 |
. . . . . . . . . 10
⊢ ((((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦 ∈ 𝑥) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥))) |
29 | 27, 28 | bitri 274 |
. . . . . . . . 9
⊢ (((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥))) |
30 | 21, 22, 29 | 3bitr4i 302 |
. . . . . . . 8
⊢ (𝑦(( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))𝑥 ↔ ((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥)) |
31 | 30 | exbii 1851 |
. . . . . . 7
⊢
(∃𝑦 𝑦(( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))𝑥 ↔
∃𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥)) |
32 | | exanali 1863 |
. . . . . . 7
⊢
(∃𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) |
33 | 31, 32 | bitri 274 |
. . . . . 6
⊢
(∃𝑦 𝑦(( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))𝑥 ↔ ¬
∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) |
34 | 4, 33 | bitri 274 |
. . . . 5
⊢ (𝑥 ∈ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E )) ↔ ¬ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) |
35 | 34 | con2bii 357 |
. . . 4
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) ↔ ¬ 𝑥 ∈ ran (( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))) |
36 | | eldif 3893 |
. . . . 5
⊢ (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E ))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ran (( SSet
∩ ( Trans × V)) ∖ ( I
∪ E )))) |
37 | 3, 36 | mpbiran 705 |
. . . 4
⊢ (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E ))) ↔ ¬ 𝑥 ∈ ran (( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))) |
38 | 35, 37 | bitr4i 277 |
. . 3
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E )))) |
39 | 2, 38 | mpgbir 1803 |
. 2
⊢ {𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} = (V ∖ ran ((
SSet ∩ ( Trans × V)) ∖ (
I ∪ E ))) |
40 | 1, 39 | eqtri 2766 |
1
⊢ On = (V
∖ ran (( SSet ∩ (
Trans × V)) ∖ ( I ∪ E ))) |