Step | Hyp | Ref
| Expression |
1 | | dfon2 33269 |
. 2
⊢ On =
{𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} |
2 | | abeq1 2884 |
. . 3
⊢ ({𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} = (V ∖ ran ((
SSet ∩ ( Trans × V)) ∖ (
I ∪ E ))) ↔ ∀𝑥(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E ))))) |
3 | | vex 3411 |
. . . . . . 7
⊢ 𝑥 ∈ V |
4 | 3 | elrn 5726 |
. . . . . 6
⊢ (𝑥 ∈ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E )) ↔ ∃𝑦 𝑦(( SSet ∩
( Trans × V)) ∖ ( I ∪ E ))𝑥) |
5 | | brin 5077 |
. . . . . . . . . . 11
⊢ (𝑦( SSet
∩ ( Trans × V))𝑥 ↔ (𝑦 SSet 𝑥 ∧ 𝑦( Trans ×
V)𝑥)) |
6 | 3 | brsset 33725 |
. . . . . . . . . . . 12
⊢ (𝑦 SSet
𝑥 ↔ 𝑦 ⊆ 𝑥) |
7 | | brxp 5563 |
. . . . . . . . . . . . . 14
⊢ (𝑦( Trans
× V)𝑥 ↔
(𝑦 ∈ Trans ∧ 𝑥 ∈ V)) |
8 | 3, 7 | mpbiran2 710 |
. . . . . . . . . . . . 13
⊢ (𝑦( Trans
× V)𝑥 ↔
𝑦 ∈ Trans ) |
9 | | vex 3411 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
10 | 9 | eltrans 33727 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
Trans ↔ Tr 𝑦) |
11 | 8, 10 | bitri 278 |
. . . . . . . . . . . 12
⊢ (𝑦( Trans
× V)𝑥 ↔
Tr 𝑦) |
12 | 6, 11 | anbi12i 630 |
. . . . . . . . . . 11
⊢ ((𝑦 SSet
𝑥 ∧ 𝑦( Trans
× V)𝑥) ↔
(𝑦 ⊆ 𝑥 ∧ Tr 𝑦)) |
13 | 5, 12 | bitri 278 |
. . . . . . . . . 10
⊢ (𝑦( SSet
∩ ( Trans × V))𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ Tr 𝑦)) |
14 | | ioran 982 |
. . . . . . . . . . 11
⊢ (¬
(𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥) ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥)) |
15 | | brun 5076 |
. . . . . . . . . . . 12
⊢ (𝑦( I ∪ E )𝑥 ↔ (𝑦 I 𝑥 ∨ 𝑦 E 𝑥)) |
16 | 3 | ideq 5685 |
. . . . . . . . . . . . 13
⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
17 | | epel 5431 |
. . . . . . . . . . . . 13
⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) |
18 | 16, 17 | orbi12i 913 |
. . . . . . . . . . . 12
⊢ ((𝑦 I 𝑥 ∨ 𝑦 E 𝑥) ↔ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥)) |
19 | 15, 18 | bitri 278 |
. . . . . . . . . . 11
⊢ (𝑦( I ∪ E )𝑥 ↔ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥)) |
20 | 14, 19 | xchnxbir 337 |
. . . . . . . . . 10
⊢ (¬
𝑦( I ∪ E )𝑥 ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥)) |
21 | 13, 20 | anbi12i 630 |
. . . . . . . . 9
⊢ ((𝑦( SSet
∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥))) |
22 | | brdif 5078 |
. . . . . . . . 9
⊢ (𝑦(( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))𝑥 ↔ (𝑦( SSet
∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥)) |
23 | | dfpss2 3987 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊊ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ ¬ 𝑦 = 𝑥)) |
24 | 23 | anbi1i 627 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ↔ ((𝑦 ⊆ 𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦)) |
25 | | an32 646 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊆ 𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥)) |
26 | 24, 25 | bitri 278 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥)) |
27 | 26 | anbi1i 627 |
. . . . . . . . . 10
⊢ (((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥) ↔ (((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦 ∈ 𝑥)) |
28 | | anass 473 |
. . . . . . . . . 10
⊢ ((((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦 ∈ 𝑥) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥))) |
29 | 27, 28 | bitri 278 |
. . . . . . . . 9
⊢ (((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥) ↔ ((𝑦 ⊆ 𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥))) |
30 | 21, 22, 29 | 3bitr4i 307 |
. . . . . . . 8
⊢ (𝑦(( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))𝑥 ↔ ((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥)) |
31 | 30 | exbii 1850 |
. . . . . . 7
⊢
(∃𝑦 𝑦(( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))𝑥 ↔
∃𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥)) |
32 | | exanali 1861 |
. . . . . . 7
⊢
(∃𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) |
33 | 31, 32 | bitri 278 |
. . . . . 6
⊢
(∃𝑦 𝑦(( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))𝑥 ↔ ¬
∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) |
34 | 4, 33 | bitri 278 |
. . . . 5
⊢ (𝑥 ∈ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E )) ↔ ¬ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) |
35 | 34 | con2bii 362 |
. . . 4
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) ↔ ¬ 𝑥 ∈ ran (( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))) |
36 | | eldif 3864 |
. . . . 5
⊢ (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E ))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ran (( SSet
∩ ( Trans × V)) ∖ ( I
∪ E )))) |
37 | 3, 36 | mpbiran 709 |
. . . 4
⊢ (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E ))) ↔ ¬ 𝑥 ∈ ran (( SSet
∩ ( Trans × V)) ∖ ( I
∪ E ))) |
38 | 35, 37 | bitr4i 281 |
. . 3
⊢
(∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans
× V)) ∖ ( I ∪ E )))) |
39 | 2, 38 | mpgbir 1802 |
. 2
⊢ {𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} = (V ∖ ran ((
SSet ∩ ( Trans × V)) ∖ (
I ∪ E ))) |
40 | 1, 39 | eqtri 2782 |
1
⊢ On = (V
∖ ran (( SSet ∩ (
Trans × V)) ∖ ( I ∪ E ))) |