Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon3 Structured version   Visualization version   GIF version

Theorem dfon3 34121
Description: A quantifier-free definition of On. (Contributed by Scott Fenton, 5-Apr-2012.)
Assertion
Ref Expression
dfon3 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))

Proof of Theorem dfon3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfon2 33674 . 2 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
2 abeq1 2872 . . 3 ({𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ∀𝑥(∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))))
3 vex 3426 . . . . . . 7 𝑥 ∈ V
43elrn 5791 . . . . . 6 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥)
5 brin 5122 . . . . . . . . . . 11 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦 SSet 𝑥𝑦( Trans × V)𝑥))
63brsset 34118 . . . . . . . . . . . 12 (𝑦 SSet 𝑥𝑦𝑥)
7 brxp 5627 . . . . . . . . . . . . . 14 (𝑦( Trans × V)𝑥 ↔ (𝑦 Trans 𝑥 ∈ V))
83, 7mpbiran2 706 . . . . . . . . . . . . 13 (𝑦( Trans × V)𝑥𝑦 Trans )
9 vex 3426 . . . . . . . . . . . . . 14 𝑦 ∈ V
109eltrans 34120 . . . . . . . . . . . . 13 (𝑦 Trans ↔ Tr 𝑦)
118, 10bitri 274 . . . . . . . . . . . 12 (𝑦( Trans × V)𝑥 ↔ Tr 𝑦)
126, 11anbi12i 626 . . . . . . . . . . 11 ((𝑦 SSet 𝑥𝑦( Trans × V)𝑥) ↔ (𝑦𝑥 ∧ Tr 𝑦))
135, 12bitri 274 . . . . . . . . . 10 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦𝑥 ∧ Tr 𝑦))
14 ioran 980 . . . . . . . . . . 11 (¬ (𝑦 = 𝑥𝑦𝑥) ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
15 brun 5121 . . . . . . . . . . . 12 (𝑦( I ∪ E )𝑥 ↔ (𝑦 I 𝑥𝑦 E 𝑥))
163ideq 5750 . . . . . . . . . . . . 13 (𝑦 I 𝑥𝑦 = 𝑥)
17 epel 5489 . . . . . . . . . . . . 13 (𝑦 E 𝑥𝑦𝑥)
1816, 17orbi12i 911 . . . . . . . . . . . 12 ((𝑦 I 𝑥𝑦 E 𝑥) ↔ (𝑦 = 𝑥𝑦𝑥))
1915, 18bitri 274 . . . . . . . . . . 11 (𝑦( I ∪ E )𝑥 ↔ (𝑦 = 𝑥𝑦𝑥))
2014, 19xchnxbir 332 . . . . . . . . . 10 𝑦( I ∪ E )𝑥 ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
2113, 20anbi12i 626 . . . . . . . . 9 ((𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
22 brdif 5123 . . . . . . . . 9 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ (𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥))
23 dfpss2 4016 . . . . . . . . . . . . 13 (𝑦𝑥 ↔ (𝑦𝑥 ∧ ¬ 𝑦 = 𝑥))
2423anbi1i 623 . . . . . . . . . . . 12 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦))
25 an32 642 . . . . . . . . . . . 12 (((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2624, 25bitri 274 . . . . . . . . . . 11 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2726anbi1i 623 . . . . . . . . . 10 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥))
28 anass 468 . . . . . . . . . 10 ((((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
2927, 28bitri 274 . . . . . . . . 9 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
3021, 22, 293bitr4i 302 . . . . . . . 8 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
3130exbii 1851 . . . . . . 7 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
32 exanali 1863 . . . . . . 7 (∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3331, 32bitri 274 . . . . . 6 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
344, 33bitri 274 . . . . 5 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3534con2bii 357 . . . 4 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
36 eldif 3893 . . . . 5 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
373, 36mpbiran 705 . . . 4 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
3835, 37bitr4i 277 . . 3 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
392, 38mpgbir 1803 . 2 {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
401, 39eqtri 2766 1 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  wpss 3884   class class class wbr 5070  Tr wtr 5187   I cid 5479   E cep 5485   × cxp 5578  ran crn 5581  Oncon0 6251   SSet csset 34061   Trans ctrans 34062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-sset 34085  df-trans 34086
This theorem is referenced by:  dfon4  34122
  Copyright terms: Public domain W3C validator