Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon3 Structured version   Visualization version   GIF version

Theorem dfon3 34194
Description: A quantifier-free definition of On. (Contributed by Scott Fenton, 5-Apr-2012.)
Assertion
Ref Expression
dfon3 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))

Proof of Theorem dfon3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfon2 33768 . 2 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
2 abeq1 2873 . . 3 ({𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ∀𝑥(∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))))
3 vex 3436 . . . . . . 7 𝑥 ∈ V
43elrn 5802 . . . . . 6 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥)
5 brin 5126 . . . . . . . . . . 11 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦 SSet 𝑥𝑦( Trans × V)𝑥))
63brsset 34191 . . . . . . . . . . . 12 (𝑦 SSet 𝑥𝑦𝑥)
7 brxp 5636 . . . . . . . . . . . . . 14 (𝑦( Trans × V)𝑥 ↔ (𝑦 Trans 𝑥 ∈ V))
83, 7mpbiran2 707 . . . . . . . . . . . . 13 (𝑦( Trans × V)𝑥𝑦 Trans )
9 vex 3436 . . . . . . . . . . . . . 14 𝑦 ∈ V
109eltrans 34193 . . . . . . . . . . . . 13 (𝑦 Trans ↔ Tr 𝑦)
118, 10bitri 274 . . . . . . . . . . . 12 (𝑦( Trans × V)𝑥 ↔ Tr 𝑦)
126, 11anbi12i 627 . . . . . . . . . . 11 ((𝑦 SSet 𝑥𝑦( Trans × V)𝑥) ↔ (𝑦𝑥 ∧ Tr 𝑦))
135, 12bitri 274 . . . . . . . . . 10 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦𝑥 ∧ Tr 𝑦))
14 ioran 981 . . . . . . . . . . 11 (¬ (𝑦 = 𝑥𝑦𝑥) ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
15 brun 5125 . . . . . . . . . . . 12 (𝑦( I ∪ E )𝑥 ↔ (𝑦 I 𝑥𝑦 E 𝑥))
163ideq 5761 . . . . . . . . . . . . 13 (𝑦 I 𝑥𝑦 = 𝑥)
17 epel 5498 . . . . . . . . . . . . 13 (𝑦 E 𝑥𝑦𝑥)
1816, 17orbi12i 912 . . . . . . . . . . . 12 ((𝑦 I 𝑥𝑦 E 𝑥) ↔ (𝑦 = 𝑥𝑦𝑥))
1915, 18bitri 274 . . . . . . . . . . 11 (𝑦( I ∪ E )𝑥 ↔ (𝑦 = 𝑥𝑦𝑥))
2014, 19xchnxbir 333 . . . . . . . . . 10 𝑦( I ∪ E )𝑥 ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
2113, 20anbi12i 627 . . . . . . . . 9 ((𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
22 brdif 5127 . . . . . . . . 9 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ (𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥))
23 dfpss2 4020 . . . . . . . . . . . . 13 (𝑦𝑥 ↔ (𝑦𝑥 ∧ ¬ 𝑦 = 𝑥))
2423anbi1i 624 . . . . . . . . . . . 12 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦))
25 an32 643 . . . . . . . . . . . 12 (((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2624, 25bitri 274 . . . . . . . . . . 11 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2726anbi1i 624 . . . . . . . . . 10 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥))
28 anass 469 . . . . . . . . . 10 ((((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
2927, 28bitri 274 . . . . . . . . 9 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
3021, 22, 293bitr4i 303 . . . . . . . 8 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
3130exbii 1850 . . . . . . 7 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
32 exanali 1862 . . . . . . 7 (∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3331, 32bitri 274 . . . . . 6 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
344, 33bitri 274 . . . . 5 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3534con2bii 358 . . . 4 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
36 eldif 3897 . . . . 5 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
373, 36mpbiran 706 . . . 4 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
3835, 37bitr4i 277 . . 3 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
392, 38mpgbir 1802 . 2 {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
401, 39eqtri 2766 1 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  wpss 3888   class class class wbr 5074  Tr wtr 5191   I cid 5488   E cep 5494   × cxp 5587  ran crn 5590  Oncon0 6266   SSet csset 34134   Trans ctrans 34135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832  df-txp 34156  df-sset 34158  df-trans 34159
This theorem is referenced by:  dfon4  34195
  Copyright terms: Public domain W3C validator