Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon3 Structured version   Visualization version   GIF version

Theorem dfon3 35910
Description: A quantifier-free definition of On. (Contributed by Scott Fenton, 5-Apr-2012.)
Assertion
Ref Expression
dfon3 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))

Proof of Theorem dfon3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfon2 35810 . 2 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
2 eqabcb 2876 . . 3 ({𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ∀𝑥(∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))))
3 vex 3463 . . . . . . 7 𝑥 ∈ V
43elrn 5873 . . . . . 6 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥)
5 brin 5171 . . . . . . . . . . 11 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦 SSet 𝑥𝑦( Trans × V)𝑥))
63brsset 35907 . . . . . . . . . . . 12 (𝑦 SSet 𝑥𝑦𝑥)
7 brxp 5703 . . . . . . . . . . . . . 14 (𝑦( Trans × V)𝑥 ↔ (𝑦 Trans 𝑥 ∈ V))
83, 7mpbiran2 710 . . . . . . . . . . . . 13 (𝑦( Trans × V)𝑥𝑦 Trans )
9 vex 3463 . . . . . . . . . . . . . 14 𝑦 ∈ V
109eltrans 35909 . . . . . . . . . . . . 13 (𝑦 Trans ↔ Tr 𝑦)
118, 10bitri 275 . . . . . . . . . . . 12 (𝑦( Trans × V)𝑥 ↔ Tr 𝑦)
126, 11anbi12i 628 . . . . . . . . . . 11 ((𝑦 SSet 𝑥𝑦( Trans × V)𝑥) ↔ (𝑦𝑥 ∧ Tr 𝑦))
135, 12bitri 275 . . . . . . . . . 10 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦𝑥 ∧ Tr 𝑦))
14 ioran 985 . . . . . . . . . . 11 (¬ (𝑦 = 𝑥𝑦𝑥) ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
15 brun 5170 . . . . . . . . . . . 12 (𝑦( I ∪ E )𝑥 ↔ (𝑦 I 𝑥𝑦 E 𝑥))
163ideq 5832 . . . . . . . . . . . . 13 (𝑦 I 𝑥𝑦 = 𝑥)
17 epel 5556 . . . . . . . . . . . . 13 (𝑦 E 𝑥𝑦𝑥)
1816, 17orbi12i 914 . . . . . . . . . . . 12 ((𝑦 I 𝑥𝑦 E 𝑥) ↔ (𝑦 = 𝑥𝑦𝑥))
1915, 18bitri 275 . . . . . . . . . . 11 (𝑦( I ∪ E )𝑥 ↔ (𝑦 = 𝑥𝑦𝑥))
2014, 19xchnxbir 333 . . . . . . . . . 10 𝑦( I ∪ E )𝑥 ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
2113, 20anbi12i 628 . . . . . . . . 9 ((𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
22 brdif 5172 . . . . . . . . 9 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ (𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥))
23 dfpss2 4063 . . . . . . . . . . . . 13 (𝑦𝑥 ↔ (𝑦𝑥 ∧ ¬ 𝑦 = 𝑥))
2423anbi1i 624 . . . . . . . . . . . 12 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦))
25 an32 646 . . . . . . . . . . . 12 (((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2624, 25bitri 275 . . . . . . . . . . 11 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2726anbi1i 624 . . . . . . . . . 10 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥))
28 anass 468 . . . . . . . . . 10 ((((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
2927, 28bitri 275 . . . . . . . . 9 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
3021, 22, 293bitr4i 303 . . . . . . . 8 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
3130exbii 1848 . . . . . . 7 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
32 exanali 1859 . . . . . . 7 (∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3331, 32bitri 275 . . . . . 6 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
344, 33bitri 275 . . . . 5 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3534con2bii 357 . . . 4 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
36 eldif 3936 . . . . 5 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
373, 36mpbiran 709 . . . 4 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
3835, 37bitr4i 278 . . 3 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
392, 38mpgbir 1799 . 2 {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
401, 39eqtri 2758 1 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2108  {cab 2713  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  wpss 3927   class class class wbr 5119  Tr wtr 5229   I cid 5547   E cep 5552   × cxp 5652  ran crn 5655  Oncon0 6352   SSet csset 35850   Trans ctrans 35851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-1st 7988  df-2nd 7989  df-txp 35872  df-sset 35874  df-trans 35875
This theorem is referenced by:  dfon4  35911
  Copyright terms: Public domain W3C validator