Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon3 Structured version   Visualization version   GIF version

Theorem dfon3 34477
Description: A quantifier-free definition of On. (Contributed by Scott Fenton, 5-Apr-2012.)
Assertion
Ref Expression
dfon3 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))

Proof of Theorem dfon3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfon2 34367 . 2 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
2 eqabc 2879 . . 3 ({𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ∀𝑥(∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))))
3 vex 3449 . . . . . . 7 𝑥 ∈ V
43elrn 5849 . . . . . 6 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥)
5 brin 5157 . . . . . . . . . . 11 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦 SSet 𝑥𝑦( Trans × V)𝑥))
63brsset 34474 . . . . . . . . . . . 12 (𝑦 SSet 𝑥𝑦𝑥)
7 brxp 5681 . . . . . . . . . . . . . 14 (𝑦( Trans × V)𝑥 ↔ (𝑦 Trans 𝑥 ∈ V))
83, 7mpbiran2 708 . . . . . . . . . . . . 13 (𝑦( Trans × V)𝑥𝑦 Trans )
9 vex 3449 . . . . . . . . . . . . . 14 𝑦 ∈ V
109eltrans 34476 . . . . . . . . . . . . 13 (𝑦 Trans ↔ Tr 𝑦)
118, 10bitri 274 . . . . . . . . . . . 12 (𝑦( Trans × V)𝑥 ↔ Tr 𝑦)
126, 11anbi12i 627 . . . . . . . . . . 11 ((𝑦 SSet 𝑥𝑦( Trans × V)𝑥) ↔ (𝑦𝑥 ∧ Tr 𝑦))
135, 12bitri 274 . . . . . . . . . 10 (𝑦( SSet ∩ ( Trans × V))𝑥 ↔ (𝑦𝑥 ∧ Tr 𝑦))
14 ioran 982 . . . . . . . . . . 11 (¬ (𝑦 = 𝑥𝑦𝑥) ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
15 brun 5156 . . . . . . . . . . . 12 (𝑦( I ∪ E )𝑥 ↔ (𝑦 I 𝑥𝑦 E 𝑥))
163ideq 5808 . . . . . . . . . . . . 13 (𝑦 I 𝑥𝑦 = 𝑥)
17 epel 5540 . . . . . . . . . . . . 13 (𝑦 E 𝑥𝑦𝑥)
1816, 17orbi12i 913 . . . . . . . . . . . 12 ((𝑦 I 𝑥𝑦 E 𝑥) ↔ (𝑦 = 𝑥𝑦𝑥))
1915, 18bitri 274 . . . . . . . . . . 11 (𝑦( I ∪ E )𝑥 ↔ (𝑦 = 𝑥𝑦𝑥))
2014, 19xchnxbir 332 . . . . . . . . . 10 𝑦( I ∪ E )𝑥 ↔ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥))
2113, 20anbi12i 627 . . . . . . . . 9 ((𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
22 brdif 5158 . . . . . . . . 9 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ (𝑦( SSet ∩ ( Trans × V))𝑥 ∧ ¬ 𝑦( I ∪ E )𝑥))
23 dfpss2 4045 . . . . . . . . . . . . 13 (𝑦𝑥 ↔ (𝑦𝑥 ∧ ¬ 𝑦 = 𝑥))
2423anbi1i 624 . . . . . . . . . . . 12 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦))
25 an32 644 . . . . . . . . . . . 12 (((𝑦𝑥 ∧ ¬ 𝑦 = 𝑥) ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2624, 25bitri 274 . . . . . . . . . . 11 ((𝑦𝑥 ∧ Tr 𝑦) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥))
2726anbi1i 624 . . . . . . . . . 10 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥))
28 anass 469 . . . . . . . . . 10 ((((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦 = 𝑥) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
2927, 28bitri 274 . . . . . . . . 9 (((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ (¬ 𝑦 = 𝑥 ∧ ¬ 𝑦𝑥)))
3021, 22, 293bitr4i 302 . . . . . . . 8 (𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
3130exbii 1850 . . . . . . 7 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥))
32 exanali 1862 . . . . . . 7 (∃𝑦((𝑦𝑥 ∧ Tr 𝑦) ∧ ¬ 𝑦𝑥) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3331, 32bitri 274 . . . . . 6 (∃𝑦 𝑦(( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))𝑥 ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
344, 33bitri 274 . . . . 5 (𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) ↔ ¬ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
3534con2bii 357 . . . 4 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
36 eldif 3920 . . . . 5 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
373, 36mpbiran 707 . . . 4 (𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) ↔ ¬ 𝑥 ∈ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
3835, 37bitr4i 277 . . 3 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ 𝑥 ∈ (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))))
392, 38mpgbir 1801 . 2 {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)} = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
401, 39eqtri 2764 1 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  wal 1539   = wceq 1541  wex 1781  wcel 2106  {cab 2713  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  wpss 3911   class class class wbr 5105  Tr wtr 5222   I cid 5530   E cep 5536   × cxp 5631  ran crn 5634  Oncon0 6317   SSet csset 34417   Trans ctrans 34418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fo 6502  df-fv 6504  df-1st 7921  df-2nd 7922  df-txp 34439  df-sset 34441  df-trans 34442
This theorem is referenced by:  dfon4  34478
  Copyright terms: Public domain W3C validator