MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo3 Structured version   Visualization version   GIF version

Theorem dffo3 7136
Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
dffo3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dffo3
StepHypRef Expression
1 dffo2 6838 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
2 ffn 6747 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 fnrnfv 6981 . . . . . 6 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
43eqeq1d 2742 . . . . 5 (𝐹 Fn 𝐴 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵))
52, 4syl 17 . . . 4 (𝐹:𝐴𝐵 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵))
6 dfbi2 474 . . . . . . 7 ((∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ ((∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵) ∧ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
7 simpr 484 . . . . . . . . . 10 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
8 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
98adantr 480 . . . . . . . . . 10 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → (𝐹𝑥) ∈ 𝐵)
107, 9eqeltrd 2844 . . . . . . . . 9 (((𝐹:𝐴𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦𝐵)
1110rexlimdva2 3163 . . . . . . . 8 (𝐹:𝐴𝐵 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵))
1211biantrurd 532 . . . . . . 7 (𝐹:𝐴𝐵 → ((𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)) ↔ ((∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵) ∧ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))))
136, 12bitr4id 290 . . . . . 6 (𝐹:𝐴𝐵 → ((∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
1413albidv 1919 . . . . 5 (𝐹:𝐴𝐵 → (∀𝑦(∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵) ↔ ∀𝑦(𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥))))
15 eqabcb 2886 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵 ↔ ∀𝑦(∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ 𝑦𝐵))
16 df-ral 3068 . . . . 5 (∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∀𝑦(𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
1714, 15, 163bitr4g 314 . . . 4 (𝐹:𝐴𝐵 → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
185, 17bitrd 279 . . 3 (𝐹:𝐴𝐵 → (ran 𝐹 = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
1918pm5.32i 574 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
201, 19bitri 275 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  ran crn 5701   Fn wfn 6568  wf 6569  ontowfo 6571  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581
This theorem is referenced by:  dffo4  7137  foelrn  7141  foco2  7143  fcofo  7324  foov  7624  fsetfocdm  8919  resixpfo  8994  fofinf1o  9400  wdom2d  9649  brwdom3  9651  isf32lem9  10430  hsmexlem2  10496  cnref1o  13050  tpfo  14549  wwlktovfo  15007  1arith  16974  fullestrcsetc  18220  fullsetcestrc  18235  orbsta  19353  symgextfo  19464  symgfixfo  19481  pwssplit1  21081  rngqiprngimfo  21334  znf1o  21593  cygznlem3  21611  scmatfo  22557  m2cpmfo  22783  pm2mpfo  22841  recosf1o  26595  efif1olem4  26605  mpodvdsmulf1o  27255  dvdsmulf1o  27257  scutfo  27960  addsfo  28034  negsfo  28103  subsfo  28113  wlkswwlksf1o  29912  wwlksnextsurj  29933  clwlkclwwlkfo  30041  clwwlkfo  30082  eucrctshift  30275  frgrncvvdeqlem9  30339  numclwwlk1lem2fo  30390  mndlactfo  33013  mndractfo  33015  subfacp1lem3  35150  cvmfolem  35247  finixpnum  37565  sticksstones3  42105  wessf1ornlem  45092  projf1o  45104  sumnnodd  45551  dvnprodlem1  45867  fourierdlem54  46081  nnfoctbdjlem  46376  isomenndlem  46451  fsetsnfo  46968  cfsetsnfsetfo  46975  sprsymrelfo  47371  prproropf1o  47381  uspgrsprfo  47871  1arymaptfo  48377  2arymaptfo  48388  rrx2xpref1o  48452
  Copyright terms: Public domain W3C validator