| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffo3 | Structured version Visualization version GIF version | ||
| Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.) |
| Ref | Expression |
|---|---|
| dffo3 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 6740 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
| 2 | ffn 6652 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | fnrnfv 6882 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
| 4 | 3 | eqeq1d 2731 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵)) |
| 6 | dfbi2 474 | . . . . . . 7 ⊢ ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵) ↔ ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)))) | |
| 7 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 = (𝐹‘𝑥)) | |
| 8 | ffvelcdm 7015 | . . . . . . . . . . 11 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ 𝐵) |
| 10 | 7, 9 | eqeltrd 2828 | . . . . . . . . 9 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 ∈ 𝐵) |
| 11 | 10 | rexlimdva2 3132 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) |
| 12 | 11 | biantrurd 532 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → ((𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) ↔ ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))))) |
| 13 | 6, 12 | bitr4id 290 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)))) |
| 14 | 13 | albidv 1920 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)))) |
| 15 | eqabcb 2869 | . . . . 5 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵 ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵)) | |
| 16 | df-ral 3045 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
| 17 | 14, 15, 16 | 3bitr4g 314 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 18 | 5, 17 | bitrd 279 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (ran 𝐹 = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 19 | 18 | pm5.32i 574 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 20 | 1, 19 | bitri 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ran crn 5620 Fn wfn 6477 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 |
| This theorem is referenced by: dffo4 7037 foelrn 7041 foco2 7043 fcofo 7225 foov 7523 fsetfocdm 8788 resixpfo 8863 fofinf1o 9222 wdom2d 9472 brwdom3 9474 isf32lem9 10255 hsmexlem2 10321 cnref1o 12886 tpfo 14407 wwlktovfo 14865 1arith 16839 fullestrcsetc 18057 fullsetcestrc 18072 orbsta 19192 symgextfo 19301 symgfixfo 19318 pwssplit1 20963 rngqiprngimfo 21208 znf1o 21458 cygznlem3 21476 scmatfo 22415 m2cpmfo 22641 pm2mpfo 22699 recosf1o 26442 efif1olem4 26452 mpodvdsmulf1o 27102 dvdsmulf1o 27104 scutfo 27819 addsfo 27895 negsfo 27964 subsfo 27974 wlkswwlksf1o 29824 wwlksnextsurj 29845 clwlkclwwlkfo 29953 clwwlkfo 29994 eucrctshift 30187 frgrncvvdeqlem9 30251 numclwwlk1lem2fo 30302 mndlactfo 32981 mndractfo 32983 subfacp1lem3 35155 cvmfolem 35252 finixpnum 37585 sticksstones3 42121 wessf1ornlem 45163 projf1o 45175 sumnnodd 45611 dvnprodlem1 45927 fourierdlem54 46141 nnfoctbdjlem 46436 isomenndlem 46511 fsetsnfo 47037 cfsetsnfsetfo 47044 sprsymrelfo 47481 prproropf1o 47491 uspgrsprfo 48132 1arymaptfo 48628 2arymaptfo 48639 rrx2xpref1o 48703 slotresfo 48883 basresposfo 48962 oppff1o 49134 diag1f1o 49519 diag2f1o 49522 |
| Copyright terms: Public domain | W3C validator |