![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffo3 | Structured version Visualization version GIF version |
Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.) |
Ref | Expression |
---|---|
dffo3 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo2 6810 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
2 | ffn 6718 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | fnrnfv 6952 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
4 | 3 | eqeq1d 2735 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵)) |
6 | dfbi2 476 | . . . . . . 7 ⊢ ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵) ↔ ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)))) | |
7 | simpr 486 | . . . . . . . . . 10 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 = (𝐹‘𝑥)) | |
8 | ffvelcdm 7084 | . . . . . . . . . . 11 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
9 | 8 | adantr 482 | . . . . . . . . . 10 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ 𝐵) |
10 | 7, 9 | eqeltrd 2834 | . . . . . . . . 9 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 ∈ 𝐵) |
11 | 10 | rexlimdva2 3158 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) |
12 | 11 | biantrurd 534 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → ((𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) ↔ ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))))) |
13 | 6, 12 | bitr4id 290 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)))) |
14 | 13 | albidv 1924 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)))) |
15 | eqabcb 2876 | . . . . 5 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵 ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵)) | |
16 | df-ral 3063 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
17 | 14, 15, 16 | 3bitr4g 314 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
18 | 5, 17 | bitrd 279 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (ran 𝐹 = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
19 | 18 | pm5.32i 576 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
20 | 1, 19 | bitri 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3062 ∃wrex 3071 ran crn 5678 Fn wfn 6539 ⟶wf 6540 –onto→wfo 6542 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 |
This theorem is referenced by: dffo4 7105 foelrn 7108 foco2 7109 fcofo 7286 foov 7581 fsetfocdm 8855 resixpfo 8930 fofinf1o 9327 wdom2d 9575 brwdom3 9577 isf32lem9 10356 hsmexlem2 10422 cnref1o 12969 wwlktovfo 14909 1arith 16860 fullestrcsetc 18103 fullsetcestrc 18118 orbsta 19177 symgextfo 19290 symgfixfo 19307 pwssplit1 20670 znf1o 21107 cygznlem3 21125 scmatfo 22032 m2cpmfo 22258 pm2mpfo 22316 recosf1o 26044 efif1olem4 26054 dvdsmulf1o 26698 scutfo 27398 addsfo 27467 negsfo 27527 wlkswwlksf1o 29133 wwlksnextsurj 29154 clwlkclwwlkfo 29262 clwwlkfo 29303 eucrctshift 29496 frgrncvvdeqlem9 29560 numclwwlk1lem2fo 29611 subfacp1lem3 34173 cvmfolem 34270 finixpnum 36473 sticksstones3 40964 wessf1ornlem 43882 projf1o 43896 sumnnodd 44346 dvnprodlem1 44662 fourierdlem54 44876 nnfoctbdjlem 45171 isomenndlem 45246 fsetsnfo 45763 cfsetsnfsetfo 45770 sprsymrelfo 46165 prproropf1o 46175 isomuspgrlem2d 46499 uspgrsprfo 46526 rngqiprngimfo 46786 1arymaptfo 47329 2arymaptfo 47340 rrx2xpref1o 47404 |
Copyright terms: Public domain | W3C validator |