![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffo3 | Structured version Visualization version GIF version |
Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.) |
Ref | Expression |
---|---|
dffo3 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo2 6809 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
2 | ffn 6717 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | fnrnfv 6951 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
4 | 3 | eqeq1d 2733 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (ran 𝐹 = 𝐵 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵)) |
6 | dfbi2 474 | . . . . . . 7 ⊢ ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵) ↔ ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)))) | |
7 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 = (𝐹‘𝑥)) | |
8 | ffvelcdm 7083 | . . . . . . . . . . 11 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ 𝐵) |
10 | 7, 9 | eqeltrd 2832 | . . . . . . . . 9 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 ∈ 𝐵) |
11 | 10 | rexlimdva2 3156 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) |
12 | 11 | biantrurd 532 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → ((𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) ↔ ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))))) |
13 | 6, 12 | bitr4id 290 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → ((∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)))) |
14 | 13 | albidv 1922 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)))) |
15 | eqabcb 2874 | . . . . 5 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵 ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ 𝑦 ∈ 𝐵)) | |
16 | df-ral 3061 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
17 | 14, 15, 16 | 3bitr4g 314 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
18 | 5, 17 | bitrd 279 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (ran 𝐹 = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
19 | 18 | pm5.32i 574 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
20 | 1, 19 | bitri 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∃wrex 3069 ran crn 5677 Fn wfn 6538 ⟶wf 6539 –onto→wfo 6541 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 |
This theorem is referenced by: dffo4 7104 foelrn 7108 foco2 7110 fcofo 7289 foov 7585 fsetfocdm 8861 resixpfo 8936 fofinf1o 9333 wdom2d 9581 brwdom3 9583 isf32lem9 10362 hsmexlem2 10428 cnref1o 12976 wwlktovfo 14916 1arith 16867 fullestrcsetc 18113 fullsetcestrc 18128 orbsta 19225 symgextfo 19338 symgfixfo 19355 pwssplit1 20903 rngqiprngimfo 21149 znf1o 21417 cygznlem3 21435 scmatfo 22352 m2cpmfo 22578 pm2mpfo 22636 recosf1o 26384 efif1olem4 26394 mpodvdsmulf1o 27039 dvdsmulf1o 27041 scutfo 27743 addsfo 27813 negsfo 27878 wlkswwlksf1o 29566 wwlksnextsurj 29587 clwlkclwwlkfo 29695 clwwlkfo 29736 eucrctshift 29929 frgrncvvdeqlem9 29993 numclwwlk1lem2fo 30044 subfacp1lem3 34637 cvmfolem 34734 finixpnum 36937 sticksstones3 41431 wessf1ornlem 44343 projf1o 44355 sumnnodd 44805 dvnprodlem1 45121 fourierdlem54 45335 nnfoctbdjlem 45630 isomenndlem 45705 fsetsnfo 46222 cfsetsnfsetfo 46229 sprsymrelfo 46624 prproropf1o 46634 isomuspgrlem2d 46958 uspgrsprfo 46985 1arymaptfo 47491 2arymaptfo 47502 rrx2xpref1o 47566 |
Copyright terms: Public domain | W3C validator |