![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem3 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 10289. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij1lem3 | ⊢ (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7904 | . . . 4 ⊢ Ord ω | |
2 | ordelss 6408 | . . . 4 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
4 | elpwg 4611 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ∈ 𝒫 ω ↔ 𝐴 ⊆ ω)) | |
5 | 3, 4 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ 𝒫 ω) |
6 | nnfi 9215 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
7 | 5, 6 | elind 4213 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3965 ⊆ wss 3966 𝒫 cpw 4608 Ord word 6391 ωcom 7894 Fincfn 8993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-om 7895 df-en 8994 df-fin 8997 |
This theorem is referenced by: ackbij1lem13 10278 ackbij1lem14 10279 ackbij1lem15 10280 ackbij1lem18 10283 ackbij1 10284 ackbij1b 10285 |
Copyright terms: Public domain | W3C validator |