![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem3 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 10267. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij1lem3 | ⊢ (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7880 | . . . 4 ⊢ Ord ω | |
2 | ordelss 6385 | . . . 4 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
3 | 1, 2 | mpan 689 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
4 | elpwg 4606 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ∈ 𝒫 ω ↔ 𝐴 ⊆ ω)) | |
5 | 3, 4 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ 𝒫 ω) |
6 | nnfi 9192 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
7 | 5, 6 | elind 4194 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4603 Ord word 6368 ωcom 7870 Fincfn 8964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-om 7871 df-en 8965 df-fin 8968 |
This theorem is referenced by: ackbij1lem13 10256 ackbij1lem14 10257 ackbij1lem15 10258 ackbij1lem18 10261 ackbij1 10262 ackbij1b 10263 |
Copyright terms: Public domain | W3C validator |