MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem3 Structured version   Visualization version   GIF version

Theorem ackbij1lem3 10246
Description: Lemma for ackbij2 10267. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem3 (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin))

Proof of Theorem ackbij1lem3
StepHypRef Expression
1 ordom 7880 . . . 4 Ord ω
2 ordelss 6385 . . . 4 ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω)
31, 2mpan 689 . . 3 (𝐴 ∈ ω → 𝐴 ⊆ ω)
4 elpwg 4606 . . 3 (𝐴 ∈ ω → (𝐴 ∈ 𝒫 ω ↔ 𝐴 ⊆ ω))
53, 4mpbird 257 . 2 (𝐴 ∈ ω → 𝐴 ∈ 𝒫 ω)
6 nnfi 9192 . 2 (𝐴 ∈ ω → 𝐴 ∈ Fin)
75, 6elind 4194 1 (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  cin 3946  wss 3947  𝒫 cpw 4603  Ord word 6368  ωcom 7870  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-om 7871  df-en 8965  df-fin 8968
This theorem is referenced by:  ackbij1lem13  10256  ackbij1lem14  10257  ackbij1lem15  10258  ackbij1lem18  10261  ackbij1  10262  ackbij1b  10263
  Copyright terms: Public domain W3C validator