Step | Hyp | Ref
| Expression |
1 | | eqger.r |
. . . 4
⊢ ∼ =
(𝐺 ~QG
𝑌) |
2 | 1 | releqg 18803 |
. . 3
⊢ Rel ∼ |
3 | 2 | a1i 11 |
. 2
⊢ (𝑌 ∈ (SubGrp‘𝐺) → Rel ∼ ) |
4 | | subgrcl 18760 |
. . . . . 6
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
5 | | eqger.x |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
6 | 5 | subgss 18756 |
. . . . . 6
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
7 | | eqid 2738 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
8 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
9 | 5, 7, 8, 1 | eqgval 18805 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌))) |
10 | 4, 6, 9 | syl2anc 584 |
. . . . 5
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌))) |
11 | 10 | biimpa 477 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌)) |
12 | 11 | simp2d 1142 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝑦 ∈ 𝑋) |
13 | 11 | simp1d 1141 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝑥 ∈ 𝑋) |
14 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝐺 ∈ Grp) |
15 | 5, 7 | grpinvcl 18627 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
16 | 14, 13, 15 | syl2anc 584 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
17 | 5, 8, 7 | grpinvadd 18653 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧
((invg‘𝐺)‘𝑥) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)((invg‘𝐺)‘((invg‘𝐺)‘𝑥)))) |
18 | 14, 16, 12, 17 | syl3anc 1370 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)((invg‘𝐺)‘((invg‘𝐺)‘𝑥)))) |
19 | 5, 7 | grpinvinv 18642 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑥)) = 𝑥) |
20 | 14, 13, 19 | syl2anc 584 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑥)) = 𝑥) |
21 | 20 | oveq2d 7291 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)((invg‘𝐺)‘((invg‘𝐺)‘𝑥))) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥)) |
22 | 18, 21 | eqtrd 2778 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥)) |
23 | 11 | simp3d 1143 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌) |
24 | 7 | subginvcl 18764 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧
(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) ∈ 𝑌) |
25 | 23, 24 | syldan 591 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) ∈ 𝑌) |
26 | 22, 25 | eqeltrrd 2840 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥) ∈ 𝑌) |
27 | 6 | adantr 481 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝑌 ⊆ 𝑋) |
28 | 5, 7, 8, 1 | eqgval 18805 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥) ∈ 𝑌))) |
29 | 14, 27, 28 | syl2anc 584 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥) ∈ 𝑌))) |
30 | 12, 13, 26, 29 | mpbir3and 1341 |
. 2
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝑦 ∼ 𝑥) |
31 | 13 | adantrr 714 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑥 ∈ 𝑋) |
32 | 5, 7, 8, 1 | eqgval 18805 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌))) |
33 | 4, 6, 32 | syl2anc 584 |
. . . . . 6
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌))) |
34 | 33 | biimpa 477 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∼ 𝑧) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌)) |
35 | 34 | adantrl 713 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌)) |
36 | 35 | simp2d 1142 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑧 ∈ 𝑋) |
37 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝐺 ∈ Grp) |
38 | 37, 31, 15 | syl2anc 584 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
39 | 12 | adantrr 714 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑦 ∈ 𝑋) |
40 | 5, 7 | grpinvcl 18627 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋) → ((invg‘𝐺)‘𝑦) ∈ 𝑋) |
41 | 37, 39, 40 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((invg‘𝐺)‘𝑦) ∈ 𝑋) |
42 | 5, 8 | grpcl 18585 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧
((invg‘𝐺)‘𝑦) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋) |
43 | 37, 41, 36, 42 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋) |
44 | 5, 8 | grpass 18586 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑥) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋)) → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (((invg‘𝐺)‘𝑥)(+g‘𝐺)(𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)))) |
45 | 37, 38, 39, 43, 44 | syl13anc 1371 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (((invg‘𝐺)‘𝑥)(+g‘𝐺)(𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)))) |
46 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
47 | 5, 8, 46, 7 | grprinv 18629 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋) → (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦)) = (0g‘𝐺)) |
48 | 37, 39, 47 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦)) = (0g‘𝐺)) |
49 | 48 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦))(+g‘𝐺)𝑧) = ((0g‘𝐺)(+g‘𝐺)𝑧)) |
50 | 5, 8 | grpass 18586 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦))(+g‘𝐺)𝑧) = (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
51 | 37, 39, 41, 36, 50 | syl13anc 1371 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦))(+g‘𝐺)𝑧) = (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
52 | 5, 8, 46 | grplid 18609 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺)(+g‘𝐺)𝑧) = 𝑧) |
53 | 37, 36, 52 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((0g‘𝐺)(+g‘𝐺)𝑧) = 𝑧) |
54 | 49, 51, 53 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = 𝑧) |
55 | 54 | oveq2d 7291 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)(𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) = (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧)) |
56 | 45, 55 | eqtrd 2778 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧)) |
57 | | simpl 483 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑌 ∈ (SubGrp‘𝐺)) |
58 | 23 | adantrr 714 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌) |
59 | 35 | simp3d 1143 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) |
60 | 8 | subgcl 18765 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧
(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑌) |
61 | 57, 58, 59, 60 | syl3anc 1370 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑌) |
62 | 56, 61 | eqeltrrd 2840 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧) ∈ 𝑌) |
63 | 6 | adantr 481 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑌 ⊆ 𝑋) |
64 | 5, 7, 8, 1 | eqgval 18805 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧) ∈ 𝑌))) |
65 | 37, 63, 64 | syl2anc 584 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧) ∈ 𝑌))) |
66 | 31, 36, 62, 65 | mpbir3and 1341 |
. 2
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑥 ∼ 𝑧) |
67 | 5, 8, 46, 7 | grplinv 18628 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) = (0g‘𝐺)) |
68 | 4, 67 | sylan 580 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) = (0g‘𝐺)) |
69 | 46 | subg0cl 18763 |
. . . . . . 7
⊢ (𝑌 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑌) |
70 | 69 | adantr 481 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (0g‘𝐺) ∈ 𝑌) |
71 | 68, 70 | eqeltrd 2839 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌) |
72 | 71 | ex 413 |
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝑋 → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌)) |
73 | 72 | pm4.71rd 563 |
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝑋 ↔ ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋))) |
74 | 5, 7, 8, 1 | eqgval 18805 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌))) |
75 | 4, 6, 74 | syl2anc 584 |
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌))) |
76 | | df-3an 1088 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌)) |
77 | | anidm 565 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ↔ 𝑥 ∈ 𝑋) |
78 | 77 | anbi2ci 625 |
. . . . 5
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌) ↔ ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋)) |
79 | 76, 78 | bitri 274 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌) ↔ ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋)) |
80 | 75, 79 | bitrdi 287 |
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∼ 𝑥 ↔ ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋))) |
81 | 73, 80 | bitr4d 281 |
. 2
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥)) |
82 | 3, 30, 66, 81 | iserd 8524 |
1
⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |