Step | Hyp | Ref
| Expression |
1 | | eqger.r |
. . . 4
⊢ ∼ =
(𝐺 ~QG
𝑌) |
2 | 1 | releqg 19049 |
. . 3
⊢ Rel ∼ |
3 | 2 | a1i 11 |
. 2
⊢ (𝑌 ∈ (SubGrp‘𝐺) → Rel ∼ ) |
4 | | subgrcl 19005 |
. . . . . 6
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
5 | | eqger.x |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
6 | 5 | subgss 19001 |
. . . . . 6
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
7 | | eqid 2732 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
8 | | eqid 2732 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
9 | 5, 7, 8, 1 | eqgval 19051 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌))) |
10 | 4, 6, 9 | syl2anc 584 |
. . . . 5
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌))) |
11 | 10 | biimpa 477 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌)) |
12 | 11 | simp2d 1143 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝑦 ∈ 𝑋) |
13 | 11 | simp1d 1142 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝑥 ∈ 𝑋) |
14 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝐺 ∈ Grp) |
15 | 5, 7, 14, 13 | grpinvcld 18869 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
16 | 5, 8, 7 | grpinvadd 18897 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧
((invg‘𝐺)‘𝑥) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)((invg‘𝐺)‘((invg‘𝐺)‘𝑥)))) |
17 | 14, 15, 12, 16 | syl3anc 1371 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)((invg‘𝐺)‘((invg‘𝐺)‘𝑥)))) |
18 | 5, 7 | grpinvinv 18886 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑥)) = 𝑥) |
19 | 14, 13, 18 | syl2anc 584 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑥)) = 𝑥) |
20 | 19 | oveq2d 7421 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)((invg‘𝐺)‘((invg‘𝐺)‘𝑥))) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥)) |
21 | 17, 20 | eqtrd 2772 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥)) |
22 | 11 | simp3d 1144 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌) |
23 | 7 | subginvcl 19009 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧
(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) ∈ 𝑌) |
24 | 22, 23 | syldan 591 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → ((invg‘𝐺)‘(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) ∈ 𝑌) |
25 | 21, 24 | eqeltrrd 2834 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥) ∈ 𝑌) |
26 | 6 | adantr 481 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝑌 ⊆ 𝑋) |
27 | 5, 7, 8, 1 | eqgval 19051 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥) ∈ 𝑌))) |
28 | 14, 26, 27 | syl2anc 584 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑥) ∈ 𝑌))) |
29 | 12, 13, 25, 28 | mpbir3and 1342 |
. 2
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∼ 𝑦) → 𝑦 ∼ 𝑥) |
30 | 13 | adantrr 715 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑥 ∈ 𝑋) |
31 | 5, 7, 8, 1 | eqgval 19051 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌))) |
32 | 4, 6, 31 | syl2anc 584 |
. . . . . 6
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌))) |
33 | 32 | biimpa 477 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∼ 𝑧) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌)) |
34 | 33 | adantrl 714 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌)) |
35 | 34 | simp2d 1143 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑧 ∈ 𝑋) |
36 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝐺 ∈ Grp) |
37 | 5, 7, 36, 30 | grpinvcld 18869 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
38 | 12 | adantrr 715 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑦 ∈ 𝑋) |
39 | 5, 7, 36, 38 | grpinvcld 18869 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((invg‘𝐺)‘𝑦) ∈ 𝑋) |
40 | 5, 8, 36, 39, 35 | grpcld 18829 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋) |
41 | 5, 8, 36, 37, 38, 40 | grpassd 18827 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (((invg‘𝐺)‘𝑥)(+g‘𝐺)(𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)))) |
42 | | eqid 2732 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
43 | 5, 8, 42, 7 | grprinv 18871 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋) → (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦)) = (0g‘𝐺)) |
44 | 36, 38, 43 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦)) = (0g‘𝐺)) |
45 | 44 | oveq1d 7420 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦))(+g‘𝐺)𝑧) = ((0g‘𝐺)(+g‘𝐺)𝑧)) |
46 | 5, 8, 36, 38, 39, 35 | grpassd 18827 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦))(+g‘𝐺)𝑧) = (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
47 | 5, 8, 42, 36, 35 | grplidd 18850 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((0g‘𝐺)(+g‘𝐺)𝑧) = 𝑧) |
48 | 45, 46, 47 | 3eqtr3d 2780 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = 𝑧) |
49 | 48 | oveq2d 7421 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)(𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) = (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧)) |
50 | 41, 49 | eqtrd 2772 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧)) |
51 | | simpl 483 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑌 ∈ (SubGrp‘𝐺)) |
52 | 22 | adantrr 715 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌) |
53 | 34 | simp3d 1144 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) |
54 | 8 | subgcl 19010 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧
(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑌 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑌) |
55 | 51, 52, 53, 54 | syl3anc 1371 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑌) |
56 | 50, 55 | eqeltrrd 2834 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧) ∈ 𝑌) |
57 | 6 | adantr 481 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑌 ⊆ 𝑋) |
58 | 5, 7, 8, 1 | eqgval 19051 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧) ∈ 𝑌))) |
59 | 36, 57, 58 | syl2anc 584 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑧) ∈ 𝑌))) |
60 | 30, 35, 56, 59 | mpbir3and 1342 |
. 2
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑥 ∼ 𝑧) |
61 | 5, 8, 42, 7 | grplinv 18870 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) = (0g‘𝐺)) |
62 | 4, 61 | sylan 580 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) = (0g‘𝐺)) |
63 | 42 | subg0cl 19008 |
. . . . . . 7
⊢ (𝑌 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑌) |
64 | 63 | adantr 481 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (0g‘𝐺) ∈ 𝑌) |
65 | 62, 64 | eqeltrd 2833 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌) |
66 | 65 | ex 413 |
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝑋 → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌)) |
67 | 66 | pm4.71rd 563 |
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝑋 ↔ ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋))) |
68 | 5, 7, 8, 1 | eqgval 19051 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌))) |
69 | 4, 6, 68 | syl2anc 584 |
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌))) |
70 | | df-3an 1089 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌)) |
71 | | anidm 565 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ↔ 𝑥 ∈ 𝑋) |
72 | 71 | anbi2ci 625 |
. . . . 5
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌) ↔ ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋)) |
73 | 70, 72 | bitri 274 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌) ↔ ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋)) |
74 | 69, 73 | bitrdi 286 |
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∼ 𝑥 ↔ ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋))) |
75 | 67, 74 | bitr4d 281 |
. 2
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥)) |
76 | 3, 29, 60, 75 | iserd 8725 |
1
⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |