MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqger Structured version   Visualization version   GIF version

Theorem eqger 17853
Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
Assertion
Ref Expression
eqger (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)

Proof of Theorem eqger
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqger.r . . . 4 = (𝐺 ~QG 𝑌)
21releqg 17850 . . 3 Rel
32a1i 11 . 2 (𝑌 ∈ (SubGrp‘𝐺) → Rel )
4 subgrcl 17808 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5 eqger.x . . . . . . 7 𝑋 = (Base‘𝐺)
65subgss 17804 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
7 eqid 2771 . . . . . . 7 (invg𝐺) = (invg𝐺)
8 eqid 2771 . . . . . . 7 (+g𝐺) = (+g𝐺)
95, 7, 8, 1eqgval 17852 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)))
104, 6, 9syl2anc 567 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)))
1110biimpa 462 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (𝑥𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌))
1211simp2d 1137 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑦𝑋)
1311simp1d 1136 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑥𝑋)
144adantr 466 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝐺 ∈ Grp)
155, 7grpinvcl 17676 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘𝑥) ∈ 𝑋)
1614, 13, 15syl2anc 567 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘𝑥) ∈ 𝑋)
175, 8, 7grpinvadd 17702 . . . . . 6 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑥) ∈ 𝑋𝑦𝑋) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) = (((invg𝐺)‘𝑦)(+g𝐺)((invg𝐺)‘((invg𝐺)‘𝑥))))
1814, 16, 12, 17syl3anc 1476 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) = (((invg𝐺)‘𝑦)(+g𝐺)((invg𝐺)‘((invg𝐺)‘𝑥))))
195, 7grpinvinv 17691 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘((invg𝐺)‘𝑥)) = 𝑥)
2014, 13, 19syl2anc 567 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘((invg𝐺)‘𝑥)) = 𝑥)
2120oveq2d 6810 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (((invg𝐺)‘𝑦)(+g𝐺)((invg𝐺)‘((invg𝐺)‘𝑥))) = (((invg𝐺)‘𝑦)(+g𝐺)𝑥))
2218, 21eqtrd 2805 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑥))
2311simp3d 1138 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)
247subginvcl 17812 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) ∈ 𝑌)
2523, 24syldan 573 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) ∈ 𝑌)
2622, 25eqeltrrd 2851 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (((invg𝐺)‘𝑦)(+g𝐺)𝑥) ∈ 𝑌)
276adantr 466 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑌𝑋)
285, 7, 8, 1eqgval 17852 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑥) ∈ 𝑌)))
2914, 27, 28syl2anc 567 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑥) ∈ 𝑌)))
3012, 13, 26, 29mpbir3and 1427 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑦 𝑥)
3113adantrr 690 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥𝑋)
325, 7, 8, 1eqgval 17852 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
334, 6, 32syl2anc 567 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
3433biimpa 462 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑦 𝑧) → (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌))
3534adantrl 689 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌))
3635simp2d 1137 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑧𝑋)
374adantr 466 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝐺 ∈ Grp)
3837, 31, 15syl2anc 567 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((invg𝐺)‘𝑥) ∈ 𝑋)
3912adantrr 690 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑦𝑋)
405, 7grpinvcl 17676 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
4137, 39, 40syl2anc 567 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
425, 8grpcl 17639 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
4337, 41, 36, 42syl3anc 1476 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
445, 8grpass 17640 . . . . . 6 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑥) ∈ 𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑥)(+g𝐺)(𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
4537, 38, 39, 43, 44syl13anc 1478 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑥)(+g𝐺)(𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
46 eqid 2771 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
475, 8, 46, 7grprinv 17678 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
4837, 39, 47syl2anc 567 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
4948oveq1d 6809 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
505, 8grpass 17640 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝑋 ∧ ((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
5137, 39, 41, 36, 50syl13anc 1478 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
525, 8, 46grplid 17661 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5337, 36, 52syl2anc 567 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5449, 51, 533eqtr3d 2813 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = 𝑧)
5554oveq2d 6810 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑥)(+g𝐺)(𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (((invg𝐺)‘𝑥)(+g𝐺)𝑧))
5645, 55eqtrd 2805 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑥)(+g𝐺)𝑧))
57 simpl 468 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑌 ∈ (SubGrp‘𝐺))
5823adantrr 690 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)
5935simp3d 1138 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)
608subgcl 17813 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑌)
6157, 58, 59, 60syl3anc 1476 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑌)
6256, 61eqeltrrd 2851 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑧) ∈ 𝑌)
636adantr 466 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑌𝑋)
645, 7, 8, 1eqgval 17852 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑧) ∈ 𝑌)))
6537, 63, 64syl2anc 567 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑧) ∈ 𝑌)))
6631, 36, 62, 65mpbir3and 1427 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥 𝑧)
675, 8, 46, 7grplinv 17677 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) = (0g𝐺))
684, 67sylan 563 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) = (0g𝐺))
6946subg0cl 17811 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑌)
7069adantr 466 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (0g𝐺) ∈ 𝑌)
7168, 70eqeltrd 2850 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌)
7271ex 397 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑋 → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌))
7372pm4.71rd 546 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑋 ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋)))
745, 7, 8, 1eqgval 17852 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌)))
754, 6, 74syl2anc 567 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌)))
76 df-3an 1073 . . . . 5 ((𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌) ↔ ((𝑥𝑋𝑥𝑋) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌))
77 anidm 548 . . . . . 6 ((𝑥𝑋𝑥𝑋) ↔ 𝑥𝑋)
7877anbi2ci 605 . . . . 5 (((𝑥𝑋𝑥𝑋) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌) ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋))
7976, 78bitri 264 . . . 4 ((𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌) ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋))
8075, 79syl6bb 276 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 𝑥 ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋)))
8173, 80bitr4d 271 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑋𝑥 𝑥))
823, 30, 66, 81iserd 7923 1 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wss 3724   class class class wbr 4787  Rel wrel 5255  cfv 6032  (class class class)co 6794   Er wer 7894  Basecbs 16065  +gcplusg 16150  0gc0g 16309  Grpcgrp 17631  invgcminusg 17632  SubGrpcsubg 17797   ~QG cqg 17799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-nn 11224  df-2 11282  df-ndx 16068  df-slot 16069  df-base 16071  df-sets 16072  df-ress 16073  df-plusg 16163  df-0g 16311  df-mgm 17451  df-sgrp 17493  df-mnd 17504  df-grp 17634  df-minusg 17635  df-subg 17800  df-eqg 17802
This theorem is referenced by:  qusgrp  17858  qusadd  17860  lagsubg2  17864  lagsubg  17865  orbstafun  17952  orbstaval  17953  orbsta  17954  orbsta2  17955  sylow2blem1  18243  sylow2blem2  18244  sylow2blem3  18245  sylow3lem3  18252  sylow3lem4  18253  2idlcpbl  19450  qus1  19451  qusrhm  19453  quscrng  19456  zndvds  20114  cldsubg  22135  qustgpopn  22144  qustgphaus  22147  tgptsmscls  22174
  Copyright terms: Public domain W3C validator