MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqger Structured version   Visualization version   GIF version

Theorem eqger 19053
Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
Assertion
Ref Expression
eqger (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)

Proof of Theorem eqger
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqger.r . . . 4 = (𝐺 ~QG 𝑌)
21releqg 19050 . . 3 Rel
32a1i 11 . 2 (𝑌 ∈ (SubGrp‘𝐺) → Rel )
4 subgrcl 19006 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5 eqger.x . . . . . . 7 𝑋 = (Base‘𝐺)
65subgss 19002 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
7 eqid 2733 . . . . . . 7 (invg𝐺) = (invg𝐺)
8 eqid 2733 . . . . . . 7 (+g𝐺) = (+g𝐺)
95, 7, 8, 1eqgval 19052 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)))
104, 6, 9syl2anc 585 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)))
1110biimpa 478 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (𝑥𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌))
1211simp2d 1144 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑦𝑋)
1311simp1d 1143 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑥𝑋)
144adantr 482 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝐺 ∈ Grp)
155, 7, 14, 13grpinvcld 18870 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘𝑥) ∈ 𝑋)
165, 8, 7grpinvadd 18898 . . . . . 6 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑥) ∈ 𝑋𝑦𝑋) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) = (((invg𝐺)‘𝑦)(+g𝐺)((invg𝐺)‘((invg𝐺)‘𝑥))))
1714, 15, 12, 16syl3anc 1372 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) = (((invg𝐺)‘𝑦)(+g𝐺)((invg𝐺)‘((invg𝐺)‘𝑥))))
185, 7grpinvinv 18887 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘((invg𝐺)‘𝑥)) = 𝑥)
1914, 13, 18syl2anc 585 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘((invg𝐺)‘𝑥)) = 𝑥)
2019oveq2d 7422 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (((invg𝐺)‘𝑦)(+g𝐺)((invg𝐺)‘((invg𝐺)‘𝑥))) = (((invg𝐺)‘𝑦)(+g𝐺)𝑥))
2117, 20eqtrd 2773 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑥))
2211simp3d 1145 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)
237subginvcl 19010 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) ∈ 𝑌)
2422, 23syldan 592 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) ∈ 𝑌)
2521, 24eqeltrrd 2835 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (((invg𝐺)‘𝑦)(+g𝐺)𝑥) ∈ 𝑌)
266adantr 482 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑌𝑋)
275, 7, 8, 1eqgval 19052 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑥) ∈ 𝑌)))
2814, 26, 27syl2anc 585 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑥) ∈ 𝑌)))
2912, 13, 25, 28mpbir3and 1343 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑦 𝑥)
3013adantrr 716 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥𝑋)
315, 7, 8, 1eqgval 19052 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
324, 6, 31syl2anc 585 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
3332biimpa 478 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑦 𝑧) → (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌))
3433adantrl 715 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌))
3534simp2d 1144 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑧𝑋)
364adantr 482 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝐺 ∈ Grp)
375, 7, 36, 30grpinvcld 18870 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((invg𝐺)‘𝑥) ∈ 𝑋)
3812adantrr 716 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑦𝑋)
395, 7, 36, 38grpinvcld 18870 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
405, 8, 36, 39, 35grpcld 18830 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
415, 8, 36, 37, 38, 40grpassd 18828 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑥)(+g𝐺)(𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
42 eqid 2733 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
435, 8, 42, 7grprinv 18872 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
4436, 38, 43syl2anc 585 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
4544oveq1d 7421 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
465, 8, 36, 38, 39, 35grpassd 18828 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
475, 8, 42, 36, 35grplidd 18851 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
4845, 46, 473eqtr3d 2781 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = 𝑧)
4948oveq2d 7422 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑥)(+g𝐺)(𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (((invg𝐺)‘𝑥)(+g𝐺)𝑧))
5041, 49eqtrd 2773 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑥)(+g𝐺)𝑧))
51 simpl 484 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑌 ∈ (SubGrp‘𝐺))
5222adantrr 716 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)
5334simp3d 1145 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)
548subgcl 19011 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑌)
5551, 52, 53, 54syl3anc 1372 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑌)
5650, 55eqeltrrd 2835 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑧) ∈ 𝑌)
576adantr 482 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑌𝑋)
585, 7, 8, 1eqgval 19052 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑧) ∈ 𝑌)))
5936, 57, 58syl2anc 585 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑧) ∈ 𝑌)))
6030, 35, 56, 59mpbir3and 1343 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥 𝑧)
615, 8, 42, 7grplinv 18871 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) = (0g𝐺))
624, 61sylan 581 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) = (0g𝐺))
6342subg0cl 19009 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑌)
6463adantr 482 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (0g𝐺) ∈ 𝑌)
6562, 64eqeltrd 2834 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌)
6665ex 414 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑋 → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌))
6766pm4.71rd 564 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑋 ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋)))
685, 7, 8, 1eqgval 19052 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌)))
694, 6, 68syl2anc 585 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌)))
70 df-3an 1090 . . . . 5 ((𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌) ↔ ((𝑥𝑋𝑥𝑋) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌))
71 anidm 566 . . . . . 6 ((𝑥𝑋𝑥𝑋) ↔ 𝑥𝑋)
7271anbi2ci 626 . . . . 5 (((𝑥𝑋𝑥𝑋) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌) ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋))
7370, 72bitri 275 . . . 4 ((𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌) ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋))
7469, 73bitrdi 287 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 𝑥 ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋)))
7567, 74bitr4d 282 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑋𝑥 𝑥))
763, 29, 60, 75iserd 8726 1 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3948   class class class wbr 5148  Rel wrel 5681  cfv 6541  (class class class)co 7406   Er wer 8697  Basecbs 17141  +gcplusg 17194  0gc0g 17382  Grpcgrp 18816  invgcminusg 18817  SubGrpcsubg 18995   ~QG cqg 18997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-0g 17384  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-grp 18819  df-minusg 18820  df-subg 18998  df-eqg 19000
This theorem is referenced by:  qusgrp  19060  qusadd  19062  lagsubg2  19066  lagsubg  19067  qus0subgadd  19071  orbstafun  19170  orbstaval  19171  orbsta  19172  orbsta2  19173  sylow2blem1  19483  sylow2blem2  19484  sylow2blem3  19485  sylow3lem3  19492  sylow3lem4  19493  qusecsub  19698  2idlcpbl  20864  qus1  20865  qusrhm  20867  qusmul2  20868  quscrng  20871  zndvds  21097  cldsubg  23607  qustgpopn  23616  qustgphaus  23619  tgptsmscls  23646  qusker  32453  qusvscpbl  32455  quslmod  32458  eqg0el  32462  qusxpid  32464  qustrivr  32466  qusmul  32504  nsgqusf1olem3  32515  ghmquskerlem1  32517  ghmquskerlem2  32519  ghmquskerlem3  32520  ghmqusker  32521  lmhmqusker  32523  rhmquskerlem  32532  qsidomlem1  32560  qsidomlem2  32561  qsnzr  32563  qsdrngilem  32597  qsdrnglem2  32599  2idlcpblrng  46748  qus2idrng  46749  qusmulrng  46752
  Copyright terms: Public domain W3C validator