MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmeter Structured version   Visualization version   GIF version

Theorem xmeter 24261
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmeter (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)

Proof of Theorem xmeter
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5 = (𝐷 “ ℝ)
2 cnvimass 6070 . . . . 5 (𝐷 “ ℝ) ⊆ dom 𝐷
31, 2eqsstri 4008 . . . 4 ⊆ dom 𝐷
4 xmetf 24157 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
53, 4fssdm 6727 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ⊆ (𝑋 × 𝑋))
6 relxp 5684 . . 3 Rel (𝑋 × 𝑋)
7 relss 5771 . . 3 ( ⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel ))
85, 6, 7mpisyl 21 . 2 (𝐷 ∈ (∞Met‘𝑋) → Rel )
91xmeterval 24260 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
109biimpa 476 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))
1110simp2d 1140 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦𝑋)
1210simp1d 1139 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑥𝑋)
13 simpl 482 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝐷 ∈ (∞Met‘𝑋))
14 xmetsym 24175 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1513, 12, 11, 14syl3anc 1368 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1610simp3d 1141 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
1715, 16eqeltrrd 2826 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
181xmeterval 24260 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
1918adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
2011, 12, 17, 19mpbir3and 1339 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦 𝑥)
2112adantrr 714 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥𝑋)
221xmeterval 24260 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ)))
2322biimpa 476 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 𝑧) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2423adantrl 713 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2524simp2d 1140 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑧𝑋)
26 simpl 482 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
2716adantrr 714 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑦) ∈ ℝ)
2824simp3d 1141 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝐷𝑧) ∈ ℝ)
29 rexadd 13208 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) = ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)))
30 readdcl 11189 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)) ∈ ℝ)
3129, 30eqeltrd 2825 . . . . 5 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3227, 28, 31syl2anc 583 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3311adantrr 714 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑦𝑋)
34 xmettri 24179 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋𝑦𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
3526, 21, 25, 33, 34syl13anc 1369 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
36 xmetlecl 24174 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋) ∧ (((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ ∧ (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))) → (𝑥𝐷𝑧) ∈ ℝ)
3726, 21, 25, 32, 35, 36syl122anc 1376 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ∈ ℝ)
381xmeterval 24260 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
3938adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
4021, 25, 37, 39mpbir3and 1339 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥 𝑧)
41 xmet0 24170 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
42 0re 11213 . . . . . . 7 0 ∈ ℝ
4341, 42eqeltrdi 2833 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) ∈ ℝ)
4443ex 412 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 → (𝑥𝐷𝑥) ∈ ℝ))
4544pm4.71rd 562 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋)))
46 df-3an 1086 . . . . 5 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ))
47 anidm 564 . . . . . 6 ((𝑥𝑋𝑥𝑋) ↔ 𝑥𝑋)
4847anbi2ci 624 . . . . 5 (((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
4946, 48bitri 275 . . . 4 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
5045, 49bitr4di 289 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
511xmeterval 24260 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
5250, 51bitr4d 282 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋𝑥 𝑥))
538, 20, 40, 52iserd 8725 1 (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wss 3940   class class class wbr 5138   × cxp 5664  ccnv 5665  dom cdm 5666  cima 5669  Rel wrel 5671  cfv 6533  (class class class)co 7401   Er wer 8696  cr 11105  0cc0 11106   + caddc 11109  *cxr 11244  cle 11246   +𝑒 cxad 13087  ∞Metcxmet 21213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-2 12272  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-xmet 21221
This theorem is referenced by:  blpnfctr  24264  xmetresbl  24265
  Copyright terms: Public domain W3C validator