![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordpwsuc | Structured version Visualization version GIF version |
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.) |
Ref | Expression |
---|---|
ordpwsuc | ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3979 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On)) | |
2 | velpw 4610 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | 2 | anbi2ci 625 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
4 | 1, 3 | bitri 275 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
5 | ordsssuc 6475 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴)) | |
6 | 5 | expcom 413 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ On → (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴))) |
7 | 6 | pm5.32d 577 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴))) |
8 | simpr 484 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ suc 𝐴) | |
9 | ordsuc 7833 | . . . . . . 7 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
10 | ordelon 6410 | . . . . . . . 8 ⊢ ((Ord suc 𝐴 ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ On) | |
11 | 10 | ex 412 | . . . . . . 7 ⊢ (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
12 | 9, 11 | sylbi 217 | . . . . . 6 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
13 | 12 | ancrd 551 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴))) |
14 | 8, 13 | impbid2 226 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) ↔ 𝑥 ∈ suc 𝐴)) |
15 | 7, 14 | bitrd 279 | . . 3 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴) ↔ 𝑥 ∈ suc 𝐴)) |
16 | 4, 15 | bitrid 283 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ 𝑥 ∈ suc 𝐴)) |
17 | 16 | eqrdv 2733 | 1 ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 Ord word 6385 Oncon0 6386 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-suc 6392 |
This theorem is referenced by: onpwsuc 7836 orduniss2 7853 |
Copyright terms: Public domain | W3C validator |