MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpwsuc Structured version   Visualization version   GIF version

Theorem ordpwsuc 7637
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.)
Assertion
Ref Expression
ordpwsuc (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)

Proof of Theorem ordpwsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3899 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ On))
2 velpw 4535 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32anbi2ci 624 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
41, 3bitri 274 . . 3 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
5 ordsssuc 6337 . . . . . 6 ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥𝐴𝑥 ∈ suc 𝐴))
65expcom 413 . . . . 5 (Ord 𝐴 → (𝑥 ∈ On → (𝑥𝐴𝑥 ∈ suc 𝐴)))
76pm5.32d 576 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
8 simpr 484 . . . . 5 ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ suc 𝐴)
9 ordsuc 7636 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
10 ordelon 6275 . . . . . . . 8 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → 𝑥 ∈ On)
1110ex 412 . . . . . . 7 (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
129, 11sylbi 216 . . . . . 6 (Ord 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
1312ancrd 551 . . . . 5 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
148, 13impbid2 225 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) ↔ 𝑥 ∈ suc 𝐴))
157, 14bitrd 278 . . 3 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ 𝑥 ∈ suc 𝐴))
164, 15syl5bb 282 . 2 (Ord 𝐴 → (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ 𝑥 ∈ suc 𝐴))
1716eqrdv 2736 1 (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883  𝒫 cpw 4530  Ord word 6250  Oncon0 6251  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257
This theorem is referenced by:  onpwsuc  7638  orduniss2  7655
  Copyright terms: Public domain W3C validator