| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordpwsuc | Structured version Visualization version GIF version | ||
| Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.) |
| Ref | Expression |
|---|---|
| ordpwsuc | ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3930 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On)) | |
| 2 | velpw 4568 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 3 | 2 | anbi2ci 625 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
| 4 | 1, 3 | bitri 275 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
| 5 | ordsssuc 6423 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴)) | |
| 6 | 5 | expcom 413 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ On → (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴))) |
| 7 | 6 | pm5.32d 577 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴))) |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ suc 𝐴) | |
| 9 | ordsuc 7788 | . . . . . . 7 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 10 | ordelon 6356 | . . . . . . . 8 ⊢ ((Ord suc 𝐴 ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ On) | |
| 11 | 10 | ex 412 | . . . . . . 7 ⊢ (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
| 12 | 9, 11 | sylbi 217 | . . . . . 6 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
| 13 | 12 | ancrd 551 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴))) |
| 14 | 8, 13 | impbid2 226 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) ↔ 𝑥 ∈ suc 𝐴)) |
| 15 | 7, 14 | bitrd 279 | . . 3 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴) ↔ 𝑥 ∈ suc 𝐴)) |
| 16 | 4, 15 | bitrid 283 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ 𝑥 ∈ suc 𝐴)) |
| 17 | 16 | eqrdv 2727 | 1 ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 Ord word 6331 Oncon0 6332 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 |
| This theorem is referenced by: onpwsuc 7791 orduniss2 7808 |
| Copyright terms: Public domain | W3C validator |