MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpwsuc Structured version   Visualization version   GIF version

Theorem ordpwsuc 7835
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.)
Assertion
Ref Expression
ordpwsuc (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)

Proof of Theorem ordpwsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3967 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ On))
2 velpw 4605 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32anbi2ci 625 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
41, 3bitri 275 . . 3 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
5 ordsssuc 6473 . . . . . 6 ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥𝐴𝑥 ∈ suc 𝐴))
65expcom 413 . . . . 5 (Ord 𝐴 → (𝑥 ∈ On → (𝑥𝐴𝑥 ∈ suc 𝐴)))
76pm5.32d 577 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
8 simpr 484 . . . . 5 ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ suc 𝐴)
9 ordsuc 7833 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
10 ordelon 6408 . . . . . . . 8 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → 𝑥 ∈ On)
1110ex 412 . . . . . . 7 (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
129, 11sylbi 217 . . . . . 6 (Ord 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
1312ancrd 551 . . . . 5 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
148, 13impbid2 226 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) ↔ 𝑥 ∈ suc 𝐴))
157, 14bitrd 279 . . 3 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ 𝑥 ∈ suc 𝐴))
164, 15bitrid 283 . 2 (Ord 𝐴 → (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ 𝑥 ∈ suc 𝐴))
1716eqrdv 2735 1 (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cin 3950  wss 3951  𝒫 cpw 4600  Ord word 6383  Oncon0 6384  suc csuc 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388  df-suc 6390
This theorem is referenced by:  onpwsuc  7836  orduniss2  7853
  Copyright terms: Public domain W3C validator