![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordpwsuc | Structured version Visualization version GIF version |
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.) |
Ref | Expression |
---|---|
ordpwsuc | ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3959 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On)) | |
2 | velpw 4602 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | 2 | anbi2ci 624 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
4 | 1, 3 | bitri 275 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
5 | ordsssuc 6447 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴)) | |
6 | 5 | expcom 413 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ On → (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴))) |
7 | 6 | pm5.32d 576 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴))) |
8 | simpr 484 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ suc 𝐴) | |
9 | ordsuc 7798 | . . . . . . 7 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
10 | ordelon 6382 | . . . . . . . 8 ⊢ ((Ord suc 𝐴 ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ On) | |
11 | 10 | ex 412 | . . . . . . 7 ⊢ (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
12 | 9, 11 | sylbi 216 | . . . . . 6 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
13 | 12 | ancrd 551 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴))) |
14 | 8, 13 | impbid2 225 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) ↔ 𝑥 ∈ suc 𝐴)) |
15 | 7, 14 | bitrd 279 | . . 3 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴) ↔ 𝑥 ∈ suc 𝐴)) |
16 | 4, 15 | bitrid 283 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ 𝑥 ∈ suc 𝐴)) |
17 | 16 | eqrdv 2724 | 1 ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∩ cin 3942 ⊆ wss 3943 𝒫 cpw 4597 Ord word 6357 Oncon0 6358 suc csuc 6360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6361 df-on 6362 df-suc 6364 |
This theorem is referenced by: onpwsuc 7801 orduniss2 7818 |
Copyright terms: Public domain | W3C validator |