Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordpwsuc | Structured version Visualization version GIF version |
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.) |
Ref | Expression |
---|---|
ordpwsuc | ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3903 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On)) | |
2 | velpw 4538 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | 2 | anbi2ci 625 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
4 | 1, 3 | bitri 274 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
5 | ordsssuc 6352 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴)) | |
6 | 5 | expcom 414 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ On → (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴))) |
7 | 6 | pm5.32d 577 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴))) |
8 | simpr 485 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ suc 𝐴) | |
9 | ordsuc 7661 | . . . . . . 7 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
10 | ordelon 6290 | . . . . . . . 8 ⊢ ((Ord suc 𝐴 ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ On) | |
11 | 10 | ex 413 | . . . . . . 7 ⊢ (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
12 | 9, 11 | sylbi 216 | . . . . . 6 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
13 | 12 | ancrd 552 | . . . . 5 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴))) |
14 | 8, 13 | impbid2 225 | . . . 4 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) ↔ 𝑥 ∈ suc 𝐴)) |
15 | 7, 14 | bitrd 278 | . . 3 ⊢ (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴) ↔ 𝑥 ∈ suc 𝐴)) |
16 | 4, 15 | bitrid 282 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ 𝑥 ∈ suc 𝐴)) |
17 | 16 | eqrdv 2736 | 1 ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 Ord word 6265 Oncon0 6266 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 |
This theorem is referenced by: onpwsuc 7663 orduniss2 7680 |
Copyright terms: Public domain | W3C validator |