MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpwsuc Structured version   Visualization version   GIF version

Theorem ordpwsuc 7851
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.)
Assertion
Ref Expression
ordpwsuc (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)

Proof of Theorem ordpwsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3992 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ On))
2 velpw 4627 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32anbi2ci 624 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
41, 3bitri 275 . . 3 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
5 ordsssuc 6484 . . . . . 6 ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥𝐴𝑥 ∈ suc 𝐴))
65expcom 413 . . . . 5 (Ord 𝐴 → (𝑥 ∈ On → (𝑥𝐴𝑥 ∈ suc 𝐴)))
76pm5.32d 576 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
8 simpr 484 . . . . 5 ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ suc 𝐴)
9 ordsuc 7849 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
10 ordelon 6419 . . . . . . . 8 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → 𝑥 ∈ On)
1110ex 412 . . . . . . 7 (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
129, 11sylbi 217 . . . . . 6 (Ord 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
1312ancrd 551 . . . . 5 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
148, 13impbid2 226 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) ↔ 𝑥 ∈ suc 𝐴))
157, 14bitrd 279 . . 3 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ 𝑥 ∈ suc 𝐴))
164, 15bitrid 283 . 2 (Ord 𝐴 → (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ 𝑥 ∈ suc 𝐴))
1716eqrdv 2738 1 (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  𝒫 cpw 4622  Ord word 6394  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  onpwsuc  7852  orduniss2  7869
  Copyright terms: Public domain W3C validator