MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrng Structured version   Visualization version   GIF version

Theorem issubrng 20456
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
issubrng.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
issubrng (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))

Proof of Theorem issubrng
Dummy variables 𝑤 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrng 20455 . . 3 SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Rng})
21mptrcl 6977 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 simp1 1136 . 2 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) → 𝑅 ∈ Rng)
4 fveq2 6858 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
54pweqd 4580 . . . . . 6 (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 (Base‘𝑅))
6 oveq1 7394 . . . . . . 7 (𝑟 = 𝑅 → (𝑟s 𝑠) = (𝑅s 𝑠))
76eleq1d 2813 . . . . . 6 (𝑟 = 𝑅 → ((𝑟s 𝑠) ∈ Rng ↔ (𝑅s 𝑠) ∈ Rng))
85, 7rabeqbidv 3424 . . . . 5 (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng} = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
9 df-subrng 20455 . . . . 5 SubRng = (𝑟 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng})
10 fvex 6871 . . . . . . 7 (Base‘𝑅) ∈ V
1110pwex 5335 . . . . . 6 𝒫 (Base‘𝑅) ∈ V
1211rabex 5294 . . . . 5 {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ∈ V
138, 9, 12fvmpt 6968 . . . 4 (𝑅 ∈ Rng → (SubRng‘𝑅) = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
1413eleq2d 2814 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng}))
15 oveq2 7395 . . . . . 6 (𝑠 = 𝐴 → (𝑅s 𝑠) = (𝑅s 𝐴))
1615eleq1d 2813 . . . . 5 (𝑠 = 𝐴 → ((𝑅s 𝑠) ∈ Rng ↔ (𝑅s 𝐴) ∈ Rng))
1716elrab 3659 . . . 4 (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng))
18 issubrng.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
1918eqcomi 2738 . . . . . . . 8 (Base‘𝑅) = 𝐵
2019sseq2i 3976 . . . . . . 7 (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴𝐵)
2120anbi2i 623 . . . . . 6 (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
22 ibar 528 . . . . . 6 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
2321, 22bitrid 283 . . . . 5 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
2410elpw2 5289 . . . . . 6 (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅))
2524anbi2ci 625 . . . . 5 ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)))
26 3anass 1094 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
2723, 25, 263bitr4g 314 . . . 4 (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
2817, 27bitrid 283 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
2914, 28bitrd 279 . 2 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
302, 3, 29pm5.21nii 378 1 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  wss 3914  𝒫 cpw 4563  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  Rngcrng 20061  SubRngcsubrng 20454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-subrng 20455
This theorem is referenced by:  subrngss  20457  subrngid  20458  subrngrng  20459  subrngrcl  20460  issubrng2  20467  subsubrng  20472  subrngpropd  20477  subrgsubrng  20487  rng2idlsubrng  21175
  Copyright terms: Public domain W3C validator