MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrng Structured version   Visualization version   GIF version

Theorem issubrng 20573
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
issubrng.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
issubrng (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))

Proof of Theorem issubrng
Dummy variables 𝑤 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrng 20572 . . 3 SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Rng})
21mptrcl 7038 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 simp1 1136 . 2 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) → 𝑅 ∈ Rng)
4 fveq2 6920 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
54pweqd 4639 . . . . . 6 (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 (Base‘𝑅))
6 oveq1 7455 . . . . . . 7 (𝑟 = 𝑅 → (𝑟s 𝑠) = (𝑅s 𝑠))
76eleq1d 2829 . . . . . 6 (𝑟 = 𝑅 → ((𝑟s 𝑠) ∈ Rng ↔ (𝑅s 𝑠) ∈ Rng))
85, 7rabeqbidv 3462 . . . . 5 (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng} = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
9 df-subrng 20572 . . . . 5 SubRng = (𝑟 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng})
10 fvex 6933 . . . . . . 7 (Base‘𝑅) ∈ V
1110pwex 5398 . . . . . 6 𝒫 (Base‘𝑅) ∈ V
1211rabex 5357 . . . . 5 {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ∈ V
138, 9, 12fvmpt 7029 . . . 4 (𝑅 ∈ Rng → (SubRng‘𝑅) = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
1413eleq2d 2830 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng}))
15 oveq2 7456 . . . . . 6 (𝑠 = 𝐴 → (𝑅s 𝑠) = (𝑅s 𝐴))
1615eleq1d 2829 . . . . 5 (𝑠 = 𝐴 → ((𝑅s 𝑠) ∈ Rng ↔ (𝑅s 𝐴) ∈ Rng))
1716elrab 3708 . . . 4 (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng))
18 issubrng.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
1918eqcomi 2749 . . . . . . . 8 (Base‘𝑅) = 𝐵
2019sseq2i 4038 . . . . . . 7 (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴𝐵)
2120anbi2i 622 . . . . . 6 (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
22 ibar 528 . . . . . 6 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
2321, 22bitrid 283 . . . . 5 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
2410elpw2 5352 . . . . . 6 (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅))
2524anbi2ci 624 . . . . 5 ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)))
26 3anass 1095 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
2723, 25, 263bitr4g 314 . . . 4 (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
2817, 27bitrid 283 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
2914, 28bitrd 279 . 2 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
302, 3, 29pm5.21nii 378 1 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  wss 3976  𝒫 cpw 4622  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  Rngcrng 20179  SubRngcsubrng 20571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-subrng 20572
This theorem is referenced by:  subrngss  20574  subrngid  20575  subrngrng  20576  subrngrcl  20577  issubrng2  20584  subsubrng  20589  subrngpropd  20594  subrgsubrng  20606  rng2idlsubrng  21298
  Copyright terms: Public domain W3C validator