MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfval2 Structured version   Visualization version   GIF version

Theorem cfval2 10257
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfval2 (𝐴 ∈ On β†’ (cfβ€˜π΄) = ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} (cardβ€˜π‘₯))
Distinct variable group:   𝑀,𝐴,π‘₯,𝑧

Proof of Theorem cfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cfval 10244 . 2 (𝐴 ∈ On β†’ (cfβ€˜π΄) = ∩ {𝑦 ∣ βˆƒπ‘₯(𝑦 = (cardβ€˜π‘₯) ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀))})
2 fvex 6903 . . . 4 (cardβ€˜π‘₯) ∈ V
32dfiin2 5036 . . 3 ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} (cardβ€˜π‘₯) = ∩ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀}𝑦 = (cardβ€˜π‘₯)}
4 df-rex 3069 . . . . . 6 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀}𝑦 = (cardβ€˜π‘₯) ↔ βˆƒπ‘₯(π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} ∧ 𝑦 = (cardβ€˜π‘₯)))
5 rabid 3450 . . . . . . . . 9 (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} ↔ (π‘₯ ∈ 𝒫 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀))
6 velpw 4606 . . . . . . . . . 10 (π‘₯ ∈ 𝒫 𝐴 ↔ π‘₯ βŠ† 𝐴)
76anbi1i 622 . . . . . . . . 9 ((π‘₯ ∈ 𝒫 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀) ↔ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀))
85, 7bitri 274 . . . . . . . 8 (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} ↔ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀))
98anbi2ci 623 . . . . . . 7 ((π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} ∧ 𝑦 = (cardβ€˜π‘₯)) ↔ (𝑦 = (cardβ€˜π‘₯) ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀)))
109exbii 1848 . . . . . 6 (βˆƒπ‘₯(π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} ∧ 𝑦 = (cardβ€˜π‘₯)) ↔ βˆƒπ‘₯(𝑦 = (cardβ€˜π‘₯) ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀)))
114, 10bitri 274 . . . . 5 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀}𝑦 = (cardβ€˜π‘₯) ↔ βˆƒπ‘₯(𝑦 = (cardβ€˜π‘₯) ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀)))
1211abbii 2800 . . . 4 {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀}𝑦 = (cardβ€˜π‘₯)} = {𝑦 ∣ βˆƒπ‘₯(𝑦 = (cardβ€˜π‘₯) ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀))}
1312inteqi 4953 . . 3 ∩ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀}𝑦 = (cardβ€˜π‘₯)} = ∩ {𝑦 ∣ βˆƒπ‘₯(𝑦 = (cardβ€˜π‘₯) ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀))}
143, 13eqtr2i 2759 . 2 ∩ {𝑦 ∣ βˆƒπ‘₯(𝑦 = (cardβ€˜π‘₯) ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀))} = ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} (cardβ€˜π‘₯)
151, 14eqtrdi 2786 1 (𝐴 ∈ On β†’ (cfβ€˜π΄) = ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} (cardβ€˜π‘₯))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  {cab 2707  βˆ€wral 3059  βˆƒwrex 3068  {crab 3430   βŠ† wss 3947  π’« cpw 4601  βˆ© cint 4949  βˆ© ciin 4997  Oncon0 6363  β€˜cfv 6542  cardccrd 9932  cfccf 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-cf 9938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator