Step | Hyp | Ref
| Expression |
1 | | cfval 9987 |
. 2
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ {𝑦
∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤))}) |
2 | | fvex 6781 |
. . . 4
⊢
(card‘𝑥)
∈ V |
3 | 2 | dfiin2 4968 |
. . 3
⊢ ∩ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤} (card‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤}𝑦 = (card‘𝑥)} |
4 | | df-rex 3071 |
. . . . . 6
⊢
(∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤} ∧ 𝑦 = (card‘𝑥))) |
5 | | rabid 3308 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤} ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤)) |
6 | | velpw 4543 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
7 | 6 | anbi1i 623 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤) ↔ (𝑥 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤)) |
8 | 5, 7 | bitri 274 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤} ↔ (𝑥 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤)) |
9 | 8 | anbi2ci 624 |
. . . . . . 7
⊢ ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤))) |
10 | 9 | exbii 1853 |
. . . . . 6
⊢
(∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤} ∧ 𝑦 = (card‘𝑥)) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤))) |
11 | 4, 10 | bitri 274 |
. . . . 5
⊢
(∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤))) |
12 | 11 | abbii 2809 |
. . . 4
⊢ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤))} |
13 | 12 | inteqi 4888 |
. . 3
⊢ ∩ {𝑦
∣ ∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤}𝑦 = (card‘𝑥)} = ∩ {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤))} |
14 | 3, 13 | eqtr2i 2768 |
. 2
⊢ ∩ {𝑦
∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤))} = ∩
𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤} (card‘𝑥) |
15 | 1, 14 | eqtrdi 2795 |
1
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤} (card‘𝑥)) |