MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfval2 Structured version   Visualization version   GIF version

Theorem cfval2 10220
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfval2 (𝐴 ∈ On → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤} (card‘𝑥))
Distinct variable group:   𝑤,𝐴,𝑥,𝑧

Proof of Theorem cfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cfval 10207 . 2 (𝐴 ∈ On → (cf‘𝐴) = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
2 fvex 6874 . . . 4 (card‘𝑥) ∈ V
32dfiin2 5001 . . 3 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤} (card‘𝑥) = {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤}𝑦 = (card‘𝑥)}
4 df-rex 3055 . . . . . 6 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤} ∧ 𝑦 = (card‘𝑥)))
5 rabid 3430 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤} ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))
6 velpw 4571 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
76anbi1i 624 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤) ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))
85, 7bitri 275 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤} ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))
98anbi2ci 625 . . . . . . 7 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
109exbii 1848 . . . . . 6 (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤} ∧ 𝑦 = (card‘𝑥)) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
114, 10bitri 275 . . . . 5 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1211abbii 2797 . . . 4 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))}
1312inteqi 4917 . . 3 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))}
143, 13eqtr2i 2754 . 2 {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))} = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤} (card‘𝑥)
151, 14eqtrdi 2781 1 (𝐴 ∈ On → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑧𝐴𝑤𝑥 𝑧𝑤} (card‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  wss 3917  𝒫 cpw 4566   cint 4913   ciin 4959  Oncon0 6335  cfv 6514  cardccrd 9895  cfccf 9897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-cf 9901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator