Step | Hyp | Ref
| Expression |
1 | | cfval 10244 |
. 2
β’ (π΄ β On β
(cfβπ΄) = β© {π¦
β£ βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))}) |
2 | | fvex 6903 |
. . . 4
β’
(cardβπ₯)
β V |
3 | 2 | dfiin2 5036 |
. . 3
β’ β© π₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€} (cardβπ₯) = β© {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€}π¦ = (cardβπ₯)} |
4 | | df-rex 3069 |
. . . . . 6
β’
(βπ₯ β
{π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€}π¦ = (cardβπ₯) β βπ₯(π₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€} β§ π¦ = (cardβπ₯))) |
5 | | rabid 3450 |
. . . . . . . . 9
β’ (π₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€} β (π₯ β π« π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€)) |
6 | | velpw 4606 |
. . . . . . . . . 10
β’ (π₯ β π« π΄ β π₯ β π΄) |
7 | 6 | anbi1i 622 |
. . . . . . . . 9
β’ ((π₯ β π« π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€) β (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€)) |
8 | 5, 7 | bitri 274 |
. . . . . . . 8
β’ (π₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€} β (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€)) |
9 | 8 | anbi2ci 623 |
. . . . . . 7
β’ ((π₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€} β§ π¦ = (cardβπ₯)) β (π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))) |
10 | 9 | exbii 1848 |
. . . . . 6
β’
(βπ₯(π₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€} β§ π¦ = (cardβπ₯)) β βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))) |
11 | 4, 10 | bitri 274 |
. . . . 5
β’
(βπ₯ β
{π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€}π¦ = (cardβπ₯) β βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))) |
12 | 11 | abbii 2800 |
. . . 4
β’ {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€}π¦ = (cardβπ₯)} = {π¦ β£ βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))} |
13 | 12 | inteqi 4953 |
. . 3
β’ β© {π¦
β£ βπ₯ β
{π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€}π¦ = (cardβπ₯)} = β© {π¦ β£ βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))} |
14 | 3, 13 | eqtr2i 2759 |
. 2
β’ β© {π¦
β£ βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))} = β©
π₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€} (cardβπ₯) |
15 | 1, 14 | eqtrdi 2786 |
1
β’ (π΄ β On β
(cfβπ΄) = β© π₯ β {π₯ β π« π΄ β£ βπ§ β π΄ βπ€ β π₯ π§ β π€} (cardβπ₯)) |