MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvsp Structured version   Visualization version   GIF version

Theorem iscvsp 25079
Description: The predicate "is a subcomplex vector space". (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.)
Hypotheses
Ref Expression
iscvsp.t · = ( ·𝑠𝑊)
iscvsp.a + = (+g𝑊)
iscvsp.v 𝑉 = (Base‘𝑊)
iscvsp.s 𝑆 = (Scalar‘𝑊)
iscvsp.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
iscvsp (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝑊,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, · ,𝑦,𝑧

Proof of Theorem iscvsp
StepHypRef Expression
1 iscvs 25078 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
2 iscvsp.t . . . . 5 · = ( ·𝑠𝑊)
3 iscvsp.a . . . . 5 + = (+g𝑊)
4 iscvsp.v . . . . 5 𝑉 = (Base‘𝑊)
5 iscvsp.s . . . . 5 𝑆 = (Scalar‘𝑊)
6 iscvsp.k . . . . 5 𝐾 = (Base‘𝑆)
72, 3, 4, 5, 6isclmp 25048 . . . 4 (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
87anbi2ci 625 . . 3 ((𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))))
9 anass 468 . . 3 ((((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))))
10 3anan12 1095 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (𝑆 = (ℂflds 𝐾) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))))
1110anbi2i 623 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ (𝑆 = (ℂflds 𝐾) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld)))))
12 anass 468 . . . . . 6 ((((Scalar‘𝑊) ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ (𝑆 = (ℂflds 𝐾) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld)))))
135eqcomi 2744 . . . . . . . . 9 (Scalar‘𝑊) = 𝑆
1413eleq1i 2825 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing ↔ 𝑆 ∈ DivRing)
1514anbi1i 624 . . . . . . 7 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ↔ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)))
1615anbi1i 624 . . . . . 6 ((((Scalar‘𝑊) ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))))
1711, 12, 163bitr2i 299 . . . . 5 (((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))))
18 3anan12 1095 . . . . 5 ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ ((𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))))
1917, 18bitr4i 278 . . . 4 (((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
2019anbi1i 624 . . 3 ((((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
218, 9, 203bitr2i 299 . 2 ((𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing) ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
221, 21bitri 275 1 (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cfv 6531  (class class class)co 7405  1c1 11130   + caddc 11132   · cmul 11134  Basecbs 17228  s cress 17251  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  Grpcgrp 18916  SubRingcsubrg 20529  DivRingcdr 20689  fldccnfld 21315  ℂModcclm 25013  ℂVecccvs 25074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-subg 19106  df-cmn 19763  df-mgp 20101  df-ur 20142  df-ring 20195  df-cring 20196  df-subrg 20530  df-lmod 20819  df-lvec 21061  df-cnfld 21316  df-clm 25014  df-cvs 25075
This theorem is referenced by:  iscvsi  25080
  Copyright terms: Public domain W3C validator