Proof of Theorem iscvsp
Step | Hyp | Ref
| Expression |
1 | | iscvs 23843 |
. 2
⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧
(Scalar‘𝑊) ∈
DivRing)) |
2 | | iscvsp.t |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
3 | | iscvsp.a |
. . . . 5
⊢ + =
(+g‘𝑊) |
4 | | iscvsp.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
5 | | iscvsp.s |
. . . . 5
⊢ 𝑆 = (Scalar‘𝑊) |
6 | | iscvsp.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑆) |
7 | 2, 3, 4, 5, 6 | isclmp 23813 |
. . . 4
⊢ (𝑊 ∈ ℂMod ↔
((𝑊 ∈ Grp ∧ 𝑆 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) |
8 | 7 | anbi2ci 627 |
. . 3
⊢ ((𝑊 ∈ ℂMod ∧
(Scalar‘𝑊) ∈
DivRing) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))) |
9 | | anass 472 |
. . 3
⊢
((((Scalar‘𝑊)
∈ DivRing ∧ (𝑊
∈ Grp ∧ 𝑆 =
(ℂfld ↾s 𝐾) ∧ 𝐾 ∈
(SubRing‘ℂfld))) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))) |
10 | | 3anan12 1094 |
. . . . . . 7
⊢ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)) ↔ (𝑆 = (ℂfld
↾s 𝐾)
∧ (𝑊 ∈ Grp ∧
𝐾 ∈
(SubRing‘ℂfld)))) |
11 | 10 | anbi2i 625 |
. . . . . 6
⊢
(((Scalar‘𝑊)
∈ DivRing ∧ (𝑊
∈ Grp ∧ 𝑆 =
(ℂfld ↾s 𝐾) ∧ 𝐾 ∈
(SubRing‘ℂfld))) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ (𝑆 = (ℂfld
↾s 𝐾)
∧ (𝑊 ∈ Grp ∧
𝐾 ∈
(SubRing‘ℂfld))))) |
12 | | anass 472 |
. . . . . 6
⊢
((((Scalar‘𝑊)
∈ DivRing ∧ 𝑆 =
(ℂfld ↾s 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈
(SubRing‘ℂfld))) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ (𝑆 = (ℂfld
↾s 𝐾)
∧ (𝑊 ∈ Grp ∧
𝐾 ∈
(SubRing‘ℂfld))))) |
13 | 5 | eqcomi 2768 |
. . . . . . . . 9
⊢
(Scalar‘𝑊) =
𝑆 |
14 | 13 | eleq1i 2843 |
. . . . . . . 8
⊢
((Scalar‘𝑊)
∈ DivRing ↔ 𝑆
∈ DivRing) |
15 | 14 | anbi1i 626 |
. . . . . . 7
⊢
(((Scalar‘𝑊)
∈ DivRing ∧ 𝑆 =
(ℂfld ↾s 𝐾)) ↔ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld
↾s 𝐾))) |
16 | 15 | anbi1i 626 |
. . . . . 6
⊢
((((Scalar‘𝑊)
∈ DivRing ∧ 𝑆 =
(ℂfld ↾s 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈
(SubRing‘ℂfld))) ↔ ((𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld
↾s 𝐾))
∧ (𝑊 ∈ Grp ∧
𝐾 ∈
(SubRing‘ℂfld)))) |
17 | 11, 12, 16 | 3bitr2i 302 |
. . . . 5
⊢
(((Scalar‘𝑊)
∈ DivRing ∧ (𝑊
∈ Grp ∧ 𝑆 =
(ℂfld ↾s 𝐾) ∧ 𝐾 ∈
(SubRing‘ℂfld))) ↔ ((𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld
↾s 𝐾))
∧ (𝑊 ∈ Grp ∧
𝐾 ∈
(SubRing‘ℂfld)))) |
18 | | 3anan12 1094 |
. . . . 5
⊢ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld
↾s 𝐾))
∧ 𝐾 ∈
(SubRing‘ℂfld)) ↔ ((𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld
↾s 𝐾))
∧ (𝑊 ∈ Grp ∧
𝐾 ∈
(SubRing‘ℂfld)))) |
19 | 17, 18 | bitr4i 281 |
. . . 4
⊢
(((Scalar‘𝑊)
∈ DivRing ∧ (𝑊
∈ Grp ∧ 𝑆 =
(ℂfld ↾s 𝐾) ∧ 𝐾 ∈
(SubRing‘ℂfld))) ↔ (𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld
↾s 𝐾))
∧ 𝐾 ∈
(SubRing‘ℂfld))) |
20 | 19 | anbi1i 626 |
. . 3
⊢
((((Scalar‘𝑊)
∈ DivRing ∧ (𝑊
∈ Grp ∧ 𝑆 =
(ℂfld ↾s 𝐾) ∧ 𝐾 ∈
(SubRing‘ℂfld))) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld
↾s 𝐾))
∧ 𝐾 ∈
(SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) |
21 | 8, 9, 20 | 3bitr2i 302 |
. 2
⊢ ((𝑊 ∈ ℂMod ∧
(Scalar‘𝑊) ∈
DivRing) ↔ ((𝑊 ∈
Grp ∧ (𝑆 ∈ DivRing
∧ 𝑆 =
(ℂfld ↾s 𝐾)) ∧ 𝐾 ∈
(SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) |
22 | 1, 21 | bitri 278 |
1
⊢ (𝑊 ∈ ℂVec ↔
((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld
↾s 𝐾))
∧ 𝐾 ∈
(SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) |