Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprunit | Structured version Visualization version GIF version |
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
opprunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
opprunit.2 | ⊢ 𝑆 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprunit | ⊢ 𝑈 = (Unit‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprunit.2 | . . . . . . . . . . 11 ⊢ 𝑆 = (oppr‘𝑅) | |
2 | eqid 2739 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | opprbas 19514 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑆) |
4 | eqid 2739 | . . . . . . . . . 10 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
5 | eqid 2739 | . . . . . . . . . 10 ⊢ (oppr‘𝑆) = (oppr‘𝑆) | |
6 | eqid 2739 | . . . . . . . . . 10 ⊢ (.r‘(oppr‘𝑆)) = (.r‘(oppr‘𝑆)) | |
7 | 3, 4, 5, 6 | opprmul 19511 | . . . . . . . . 9 ⊢ (𝑦(.r‘(oppr‘𝑆))𝑥) = (𝑥(.r‘𝑆)𝑦) |
8 | eqid 2739 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
9 | 2, 8, 1, 4 | opprmul 19511 | . . . . . . . . 9 ⊢ (𝑥(.r‘𝑆)𝑦) = (𝑦(.r‘𝑅)𝑥) |
10 | 7, 9 | eqtr2i 2763 | . . . . . . . 8 ⊢ (𝑦(.r‘𝑅)𝑥) = (𝑦(.r‘(oppr‘𝑆))𝑥) |
11 | 10 | eqeq1i 2744 | . . . . . . 7 ⊢ ((𝑦(.r‘𝑅)𝑥) = (1r‘𝑅) ↔ (𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅)) |
12 | 11 | rexbii 3162 | . . . . . 6 ⊢ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅)) |
13 | 12 | anbi2i 626 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅))) |
14 | eqid 2739 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
15 | 2, 14, 8 | dvdsr 19531 | . . . . 5 ⊢ (𝑥(∥r‘𝑅)(1r‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅))) |
16 | 5, 3 | opprbas 19514 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑆)) |
17 | eqid 2739 | . . . . . 6 ⊢ (∥r‘(oppr‘𝑆)) = (∥r‘(oppr‘𝑆)) | |
18 | 16, 17, 6 | dvdsr 19531 | . . . . 5 ⊢ (𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅))) |
19 | 13, 15, 18 | 3bitr4i 306 | . . . 4 ⊢ (𝑥(∥r‘𝑅)(1r‘𝑅) ↔ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅)) |
20 | 19 | anbi2ci 628 | . . 3 ⊢ ((𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘𝑆)(1r‘𝑅)) ↔ (𝑥(∥r‘𝑆)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅))) |
21 | opprunit.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
22 | eqid 2739 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
23 | eqid 2739 | . . . 4 ⊢ (∥r‘𝑆) = (∥r‘𝑆) | |
24 | 21, 22, 14, 1, 23 | isunit 19542 | . . 3 ⊢ (𝑥 ∈ 𝑈 ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘𝑆)(1r‘𝑅))) |
25 | eqid 2739 | . . . 4 ⊢ (Unit‘𝑆) = (Unit‘𝑆) | |
26 | 1, 22 | oppr1 19519 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑆) |
27 | 25, 26, 23, 5, 17 | isunit 19542 | . . 3 ⊢ (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥(∥r‘𝑆)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅))) |
28 | 20, 24, 27 | 3bitr4i 306 | . 2 ⊢ (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ (Unit‘𝑆)) |
29 | 28 | eqriv 2736 | 1 ⊢ 𝑈 = (Unit‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∃wrex 3055 class class class wbr 5040 ‘cfv 6350 (class class class)co 7183 Basecbs 16599 .rcmulr 16682 1rcur 19383 opprcoppr 19507 ∥rcdsr 19523 Unitcui 19524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-tpos 7934 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-er 8333 df-en 8569 df-dom 8570 df-sdom 8571 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-nn 11730 df-2 11792 df-3 11793 df-ndx 16602 df-slot 16603 df-base 16605 df-sets 16606 df-plusg 16694 df-mulr 16695 df-0g 16831 df-mgp 19372 df-ur 19384 df-oppr 19508 df-dvdsr 19526 df-unit 19527 |
This theorem is referenced by: opprirred 19587 irredlmul 19593 opprdrng 19658 ply1divalg2 24904 |
Copyright terms: Public domain | W3C validator |