| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprunit | Structured version Visualization version GIF version | ||
| Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| opprunit.2 | ⊢ 𝑆 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprunit | ⊢ 𝑈 = (Unit‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprunit.2 | . . . . . . . . . . 11 ⊢ 𝑆 = (oppr‘𝑅) | |
| 2 | eqid 2735 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | opprbas 20303 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑆) |
| 4 | eqid 2735 | . . . . . . . . . 10 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 5 | eqid 2735 | . . . . . . . . . 10 ⊢ (oppr‘𝑆) = (oppr‘𝑆) | |
| 6 | eqid 2735 | . . . . . . . . . 10 ⊢ (.r‘(oppr‘𝑆)) = (.r‘(oppr‘𝑆)) | |
| 7 | 3, 4, 5, 6 | opprmul 20300 | . . . . . . . . 9 ⊢ (𝑦(.r‘(oppr‘𝑆))𝑥) = (𝑥(.r‘𝑆)𝑦) |
| 8 | eqid 2735 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 9 | 2, 8, 1, 4 | opprmul 20300 | . . . . . . . . 9 ⊢ (𝑥(.r‘𝑆)𝑦) = (𝑦(.r‘𝑅)𝑥) |
| 10 | 7, 9 | eqtr2i 2759 | . . . . . . . 8 ⊢ (𝑦(.r‘𝑅)𝑥) = (𝑦(.r‘(oppr‘𝑆))𝑥) |
| 11 | 10 | eqeq1i 2740 | . . . . . . 7 ⊢ ((𝑦(.r‘𝑅)𝑥) = (1r‘𝑅) ↔ (𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅)) |
| 12 | 11 | rexbii 3083 | . . . . . 6 ⊢ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅)) |
| 13 | 12 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅))) |
| 14 | eqid 2735 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 15 | 2, 14, 8 | dvdsr 20322 | . . . . 5 ⊢ (𝑥(∥r‘𝑅)(1r‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅))) |
| 16 | 5, 3 | opprbas 20303 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑆)) |
| 17 | eqid 2735 | . . . . . 6 ⊢ (∥r‘(oppr‘𝑆)) = (∥r‘(oppr‘𝑆)) | |
| 18 | 16, 17, 6 | dvdsr 20322 | . . . . 5 ⊢ (𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅))) |
| 19 | 13, 15, 18 | 3bitr4i 303 | . . . 4 ⊢ (𝑥(∥r‘𝑅)(1r‘𝑅) ↔ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅)) |
| 20 | 19 | anbi2ci 625 | . . 3 ⊢ ((𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘𝑆)(1r‘𝑅)) ↔ (𝑥(∥r‘𝑆)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅))) |
| 21 | opprunit.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 22 | eqid 2735 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 23 | eqid 2735 | . . . 4 ⊢ (∥r‘𝑆) = (∥r‘𝑆) | |
| 24 | 21, 22, 14, 1, 23 | isunit 20333 | . . 3 ⊢ (𝑥 ∈ 𝑈 ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘𝑆)(1r‘𝑅))) |
| 25 | eqid 2735 | . . . 4 ⊢ (Unit‘𝑆) = (Unit‘𝑆) | |
| 26 | 1, 22 | oppr1 20310 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑆) |
| 27 | 25, 26, 23, 5, 17 | isunit 20333 | . . 3 ⊢ (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥(∥r‘𝑆)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅))) |
| 28 | 20, 24, 27 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ (Unit‘𝑆)) |
| 29 | 28 | eqriv 2732 | 1 ⊢ 𝑈 = (Unit‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 1rcur 20141 opprcoppr 20296 ∥rcdsr 20314 Unitcui 20315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mgp 20101 df-ur 20142 df-oppr 20297 df-dvdsr 20317 df-unit 20318 |
| This theorem is referenced by: opprirred 20382 irredlmul 20388 opprdrng 20724 ply1divalg2 26096 opprqusdrng 33508 |
| Copyright terms: Public domain | W3C validator |