![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprunit | Structured version Visualization version GIF version |
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
opprunit.1 | β’ π = (Unitβπ ) |
opprunit.2 | β’ π = (opprβπ ) |
Ref | Expression |
---|---|
opprunit | β’ π = (Unitβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprunit.2 | . . . . . . . . . . 11 β’ π = (opprβπ ) | |
2 | eqid 2726 | . . . . . . . . . . 11 β’ (Baseβπ ) = (Baseβπ ) | |
3 | 1, 2 | opprbas 20243 | . . . . . . . . . 10 β’ (Baseβπ ) = (Baseβπ) |
4 | eqid 2726 | . . . . . . . . . 10 β’ (.rβπ) = (.rβπ) | |
5 | eqid 2726 | . . . . . . . . . 10 β’ (opprβπ) = (opprβπ) | |
6 | eqid 2726 | . . . . . . . . . 10 β’ (.rβ(opprβπ)) = (.rβ(opprβπ)) | |
7 | 3, 4, 5, 6 | opprmul 20239 | . . . . . . . . 9 β’ (π¦(.rβ(opprβπ))π₯) = (π₯(.rβπ)π¦) |
8 | eqid 2726 | . . . . . . . . . 10 β’ (.rβπ ) = (.rβπ ) | |
9 | 2, 8, 1, 4 | opprmul 20239 | . . . . . . . . 9 β’ (π₯(.rβπ)π¦) = (π¦(.rβπ )π₯) |
10 | 7, 9 | eqtr2i 2755 | . . . . . . . 8 β’ (π¦(.rβπ )π₯) = (π¦(.rβ(opprβπ))π₯) |
11 | 10 | eqeq1i 2731 | . . . . . . 7 β’ ((π¦(.rβπ )π₯) = (1rβπ ) β (π¦(.rβ(opprβπ))π₯) = (1rβπ )) |
12 | 11 | rexbii 3088 | . . . . . 6 β’ (βπ¦ β (Baseβπ )(π¦(.rβπ )π₯) = (1rβπ ) β βπ¦ β (Baseβπ )(π¦(.rβ(opprβπ))π₯) = (1rβπ )) |
13 | 12 | anbi2i 622 | . . . . 5 β’ ((π₯ β (Baseβπ ) β§ βπ¦ β (Baseβπ )(π¦(.rβπ )π₯) = (1rβπ )) β (π₯ β (Baseβπ ) β§ βπ¦ β (Baseβπ )(π¦(.rβ(opprβπ))π₯) = (1rβπ ))) |
14 | eqid 2726 | . . . . . 6 β’ (β₯rβπ ) = (β₯rβπ ) | |
15 | 2, 14, 8 | dvdsr 20264 | . . . . 5 β’ (π₯(β₯rβπ )(1rβπ ) β (π₯ β (Baseβπ ) β§ βπ¦ β (Baseβπ )(π¦(.rβπ )π₯) = (1rβπ ))) |
16 | 5, 3 | opprbas 20243 | . . . . . 6 β’ (Baseβπ ) = (Baseβ(opprβπ)) |
17 | eqid 2726 | . . . . . 6 β’ (β₯rβ(opprβπ)) = (β₯rβ(opprβπ)) | |
18 | 16, 17, 6 | dvdsr 20264 | . . . . 5 β’ (π₯(β₯rβ(opprβπ))(1rβπ ) β (π₯ β (Baseβπ ) β§ βπ¦ β (Baseβπ )(π¦(.rβ(opprβπ))π₯) = (1rβπ ))) |
19 | 13, 15, 18 | 3bitr4i 303 | . . . 4 β’ (π₯(β₯rβπ )(1rβπ ) β π₯(β₯rβ(opprβπ))(1rβπ )) |
20 | 19 | anbi2ci 624 | . . 3 β’ ((π₯(β₯rβπ )(1rβπ ) β§ π₯(β₯rβπ)(1rβπ )) β (π₯(β₯rβπ)(1rβπ ) β§ π₯(β₯rβ(opprβπ))(1rβπ ))) |
21 | opprunit.1 | . . . 4 β’ π = (Unitβπ ) | |
22 | eqid 2726 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
23 | eqid 2726 | . . . 4 β’ (β₯rβπ) = (β₯rβπ) | |
24 | 21, 22, 14, 1, 23 | isunit 20275 | . . 3 β’ (π₯ β π β (π₯(β₯rβπ )(1rβπ ) β§ π₯(β₯rβπ)(1rβπ ))) |
25 | eqid 2726 | . . . 4 β’ (Unitβπ) = (Unitβπ) | |
26 | 1, 22 | oppr1 20252 | . . . 4 β’ (1rβπ ) = (1rβπ) |
27 | 25, 26, 23, 5, 17 | isunit 20275 | . . 3 β’ (π₯ β (Unitβπ) β (π₯(β₯rβπ)(1rβπ ) β§ π₯(β₯rβ(opprβπ))(1rβπ ))) |
28 | 20, 24, 27 | 3bitr4i 303 | . 2 β’ (π₯ β π β π₯ β (Unitβπ)) |
29 | 28 | eqriv 2723 | 1 β’ π = (Unitβπ) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1533 β wcel 2098 βwrex 3064 class class class wbr 5141 βcfv 6537 (class class class)co 7405 Basecbs 17153 .rcmulr 17207 1rcur 20086 opprcoppr 20235 β₯rcdsr 20256 Unitcui 20257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-mulr 17220 df-0g 17396 df-mgp 20040 df-ur 20087 df-oppr 20236 df-dvdsr 20259 df-unit 20260 |
This theorem is referenced by: opprirred 20324 irredlmul 20330 opprdrng 20619 ply1divalg2 26029 opprqusdrng 33113 |
Copyright terms: Public domain | W3C validator |