| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprunit | Structured version Visualization version GIF version | ||
| Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| opprunit.2 | ⊢ 𝑆 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprunit | ⊢ 𝑈 = (Unit‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprunit.2 | . . . . . . . . . . 11 ⊢ 𝑆 = (oppr‘𝑅) | |
| 2 | eqid 2730 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | opprbas 20259 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑆) |
| 4 | eqid 2730 | . . . . . . . . . 10 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 5 | eqid 2730 | . . . . . . . . . 10 ⊢ (oppr‘𝑆) = (oppr‘𝑆) | |
| 6 | eqid 2730 | . . . . . . . . . 10 ⊢ (.r‘(oppr‘𝑆)) = (.r‘(oppr‘𝑆)) | |
| 7 | 3, 4, 5, 6 | opprmul 20256 | . . . . . . . . 9 ⊢ (𝑦(.r‘(oppr‘𝑆))𝑥) = (𝑥(.r‘𝑆)𝑦) |
| 8 | eqid 2730 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 9 | 2, 8, 1, 4 | opprmul 20256 | . . . . . . . . 9 ⊢ (𝑥(.r‘𝑆)𝑦) = (𝑦(.r‘𝑅)𝑥) |
| 10 | 7, 9 | eqtr2i 2754 | . . . . . . . 8 ⊢ (𝑦(.r‘𝑅)𝑥) = (𝑦(.r‘(oppr‘𝑆))𝑥) |
| 11 | 10 | eqeq1i 2735 | . . . . . . 7 ⊢ ((𝑦(.r‘𝑅)𝑥) = (1r‘𝑅) ↔ (𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅)) |
| 12 | 11 | rexbii 3077 | . . . . . 6 ⊢ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅)) |
| 13 | 12 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅))) |
| 14 | eqid 2730 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 15 | 2, 14, 8 | dvdsr 20278 | . . . . 5 ⊢ (𝑥(∥r‘𝑅)(1r‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅))) |
| 16 | 5, 3 | opprbas 20259 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑆)) |
| 17 | eqid 2730 | . . . . . 6 ⊢ (∥r‘(oppr‘𝑆)) = (∥r‘(oppr‘𝑆)) | |
| 18 | 16, 17, 6 | dvdsr 20278 | . . . . 5 ⊢ (𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅))) |
| 19 | 13, 15, 18 | 3bitr4i 303 | . . . 4 ⊢ (𝑥(∥r‘𝑅)(1r‘𝑅) ↔ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅)) |
| 20 | 19 | anbi2ci 625 | . . 3 ⊢ ((𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘𝑆)(1r‘𝑅)) ↔ (𝑥(∥r‘𝑆)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅))) |
| 21 | opprunit.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 22 | eqid 2730 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 23 | eqid 2730 | . . . 4 ⊢ (∥r‘𝑆) = (∥r‘𝑆) | |
| 24 | 21, 22, 14, 1, 23 | isunit 20289 | . . 3 ⊢ (𝑥 ∈ 𝑈 ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘𝑆)(1r‘𝑅))) |
| 25 | eqid 2730 | . . . 4 ⊢ (Unit‘𝑆) = (Unit‘𝑆) | |
| 26 | 1, 22 | oppr1 20266 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑆) |
| 27 | 25, 26, 23, 5, 17 | isunit 20289 | . . 3 ⊢ (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥(∥r‘𝑆)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅))) |
| 28 | 20, 24, 27 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ (Unit‘𝑆)) |
| 29 | 28 | eqriv 2727 | 1 ⊢ 𝑈 = (Unit‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 1rcur 20097 opprcoppr 20252 ∥rcdsr 20270 Unitcui 20271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-0g 17411 df-mgp 20057 df-ur 20098 df-oppr 20253 df-dvdsr 20273 df-unit 20274 |
| This theorem is referenced by: opprirred 20338 irredlmul 20344 opprdrng 20680 ply1divalg2 26051 opprqusdrng 33471 |
| Copyright terms: Public domain | W3C validator |