Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprunit | Structured version Visualization version GIF version |
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
opprunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
opprunit.2 | ⊢ 𝑆 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprunit | ⊢ 𝑈 = (Unit‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprunit.2 | . . . . . . . . . . 11 ⊢ 𝑆 = (oppr‘𝑅) | |
2 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | opprbas 19869 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑆) |
4 | eqid 2738 | . . . . . . . . . 10 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
5 | eqid 2738 | . . . . . . . . . 10 ⊢ (oppr‘𝑆) = (oppr‘𝑆) | |
6 | eqid 2738 | . . . . . . . . . 10 ⊢ (.r‘(oppr‘𝑆)) = (.r‘(oppr‘𝑆)) | |
7 | 3, 4, 5, 6 | opprmul 19865 | . . . . . . . . 9 ⊢ (𝑦(.r‘(oppr‘𝑆))𝑥) = (𝑥(.r‘𝑆)𝑦) |
8 | eqid 2738 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
9 | 2, 8, 1, 4 | opprmul 19865 | . . . . . . . . 9 ⊢ (𝑥(.r‘𝑆)𝑦) = (𝑦(.r‘𝑅)𝑥) |
10 | 7, 9 | eqtr2i 2767 | . . . . . . . 8 ⊢ (𝑦(.r‘𝑅)𝑥) = (𝑦(.r‘(oppr‘𝑆))𝑥) |
11 | 10 | eqeq1i 2743 | . . . . . . 7 ⊢ ((𝑦(.r‘𝑅)𝑥) = (1r‘𝑅) ↔ (𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅)) |
12 | 11 | rexbii 3181 | . . . . . 6 ⊢ (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅)) |
13 | 12 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅))) |
14 | eqid 2738 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
15 | 2, 14, 8 | dvdsr 19888 | . . . . 5 ⊢ (𝑥(∥r‘𝑅)(1r‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑥) = (1r‘𝑅))) |
16 | 5, 3 | opprbas 19869 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑆)) |
17 | eqid 2738 | . . . . . 6 ⊢ (∥r‘(oppr‘𝑆)) = (∥r‘(oppr‘𝑆)) | |
18 | 16, 17, 6 | dvdsr 19888 | . . . . 5 ⊢ (𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑆))𝑥) = (1r‘𝑅))) |
19 | 13, 15, 18 | 3bitr4i 303 | . . . 4 ⊢ (𝑥(∥r‘𝑅)(1r‘𝑅) ↔ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅)) |
20 | 19 | anbi2ci 625 | . . 3 ⊢ ((𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘𝑆)(1r‘𝑅)) ↔ (𝑥(∥r‘𝑆)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅))) |
21 | opprunit.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
22 | eqid 2738 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
23 | eqid 2738 | . . . 4 ⊢ (∥r‘𝑆) = (∥r‘𝑆) | |
24 | 21, 22, 14, 1, 23 | isunit 19899 | . . 3 ⊢ (𝑥 ∈ 𝑈 ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘𝑆)(1r‘𝑅))) |
25 | eqid 2738 | . . . 4 ⊢ (Unit‘𝑆) = (Unit‘𝑆) | |
26 | 1, 22 | oppr1 19876 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑆) |
27 | 25, 26, 23, 5, 17 | isunit 19899 | . . 3 ⊢ (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥(∥r‘𝑆)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑅))) |
28 | 20, 24, 27 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ (Unit‘𝑆)) |
29 | 28 | eqriv 2735 | 1 ⊢ 𝑈 = (Unit‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 1rcur 19737 opprcoppr 19861 ∥rcdsr 19880 Unitcui 19881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgp 19721 df-ur 19738 df-oppr 19862 df-dvdsr 19883 df-unit 19884 |
This theorem is referenced by: opprirred 19944 irredlmul 19950 opprdrng 20015 ply1divalg2 25303 |
Copyright terms: Public domain | W3C validator |