Step | Hyp | Ref
| Expression |
1 | | gaorb.1 |
. . . 4
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
2 | 1 | relopabiv 5730 |
. . 3
⊢ Rel ∼ |
3 | 2 | a1i 11 |
. 2
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → Rel ∼ ) |
4 | | simpr 485 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) → 𝑢 ∼ 𝑣) |
5 | 1 | gaorb 18913 |
. . . . 5
⊢ (𝑢 ∼ 𝑣 ↔ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑣)) |
6 | 4, 5 | sylib 217 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) → (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑣)) |
7 | 6 | simp2d 1142 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) → 𝑣 ∈ 𝑌) |
8 | 6 | simp1d 1141 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) → 𝑢 ∈ 𝑌) |
9 | 6 | simp3d 1143 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) → ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑣) |
10 | | simpll 764 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) ∧ ℎ ∈ 𝑋) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
11 | | simpr 485 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) ∧ ℎ ∈ 𝑋) → ℎ ∈ 𝑋) |
12 | 8 | adantr 481 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) ∧ ℎ ∈ 𝑋) → 𝑢 ∈ 𝑌) |
13 | 7 | adantr 481 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) ∧ ℎ ∈ 𝑋) → 𝑣 ∈ 𝑌) |
14 | | gaorber.2 |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
16 | 14, 15 | gacan 18911 |
. . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (ℎ ∈ 𝑋 ∧ 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((ℎ ⊕ 𝑢) = 𝑣 ↔ (((invg‘𝐺)‘ℎ) ⊕ 𝑣) = 𝑢)) |
17 | 10, 11, 12, 13, 16 | syl13anc 1371 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) ∧ ℎ ∈ 𝑋) → ((ℎ ⊕ 𝑢) = 𝑣 ↔ (((invg‘𝐺)‘ℎ) ⊕ 𝑣) = 𝑢)) |
18 | | gagrp 18898 |
. . . . . . . . 9
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
19 | 18 | adantr 481 |
. . . . . . . 8
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) → 𝐺 ∈ Grp) |
20 | 14, 15 | grpinvcl 18627 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ ℎ ∈ 𝑋) → ((invg‘𝐺)‘ℎ) ∈ 𝑋) |
21 | 19, 20 | sylan 580 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) ∧ ℎ ∈ 𝑋) → ((invg‘𝐺)‘ℎ) ∈ 𝑋) |
22 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑘 = ((invg‘𝐺)‘ℎ) → (𝑘 ⊕ 𝑣) = (((invg‘𝐺)‘ℎ) ⊕ 𝑣)) |
23 | 22 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑘 = ((invg‘𝐺)‘ℎ) → ((𝑘 ⊕ 𝑣) = 𝑢 ↔ (((invg‘𝐺)‘ℎ) ⊕ 𝑣) = 𝑢)) |
24 | 23 | rspcev 3561 |
. . . . . . . 8
⊢
((((invg‘𝐺)‘ℎ) ∈ 𝑋 ∧ (((invg‘𝐺)‘ℎ) ⊕ 𝑣) = 𝑢) → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑢) |
25 | 24 | ex 413 |
. . . . . . 7
⊢
(((invg‘𝐺)‘ℎ) ∈ 𝑋 → ((((invg‘𝐺)‘ℎ) ⊕ 𝑣) = 𝑢 → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑢)) |
26 | 21, 25 | syl 17 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) ∧ ℎ ∈ 𝑋) → ((((invg‘𝐺)‘ℎ) ⊕ 𝑣) = 𝑢 → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑢)) |
27 | 17, 26 | sylbid 239 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) ∧ ℎ ∈ 𝑋) → ((ℎ ⊕ 𝑢) = 𝑣 → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑢)) |
28 | 27 | rexlimdva 3213 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) → (∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑣 → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑢)) |
29 | 9, 28 | mpd 15 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑢) |
30 | 1 | gaorb 18913 |
. . 3
⊢ (𝑣 ∼ 𝑢 ↔ (𝑣 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑢)) |
31 | 7, 8, 29, 30 | syl3anbrc 1342 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∼ 𝑣) → 𝑣 ∼ 𝑢) |
32 | 8 | adantrr 714 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → 𝑢 ∈ 𝑌) |
33 | | simprr 770 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → 𝑣 ∼ 𝑤) |
34 | 1 | gaorb 18913 |
. . . . 5
⊢ (𝑣 ∼ 𝑤 ↔ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑤)) |
35 | 33, 34 | sylib 217 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑤)) |
36 | 35 | simp2d 1142 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → 𝑤 ∈ 𝑌) |
37 | 9 | adantrr 714 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑣) |
38 | 35 | simp3d 1143 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑤) |
39 | | reeanv 3294 |
. . . . 5
⊢
(∃ℎ ∈
𝑋 ∃𝑘 ∈ 𝑋 ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤) ↔ (∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑣 ∧ ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑤)) |
40 | 18 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → 𝐺 ∈ Grp) |
41 | | simprlr 777 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → 𝑘 ∈ 𝑋) |
42 | | simprll 776 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → ℎ ∈ 𝑋) |
43 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
44 | 14, 43 | grpcl 18585 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋) → (𝑘(+g‘𝐺)ℎ) ∈ 𝑋) |
45 | 40, 41, 42, 44 | syl3anc 1370 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → (𝑘(+g‘𝐺)ℎ) ∈ 𝑋) |
46 | | simpll 764 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
47 | 32 | adantr 481 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → 𝑢 ∈ 𝑌) |
48 | 14, 43 | gaass 18903 |
. . . . . . . . . 10
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ 𝑢 ∈ 𝑌)) → ((𝑘(+g‘𝐺)ℎ) ⊕ 𝑢) = (𝑘 ⊕ (ℎ ⊕ 𝑢))) |
49 | 46, 41, 42, 47, 48 | syl13anc 1371 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → ((𝑘(+g‘𝐺)ℎ) ⊕ 𝑢) = (𝑘 ⊕ (ℎ ⊕ 𝑢))) |
50 | | simprrl 778 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → (ℎ ⊕ 𝑢) = 𝑣) |
51 | 50 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → (𝑘 ⊕ (ℎ ⊕ 𝑢)) = (𝑘 ⊕ 𝑣)) |
52 | | simprrr 779 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → (𝑘 ⊕ 𝑣) = 𝑤) |
53 | 49, 51, 52 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → ((𝑘(+g‘𝐺)ℎ) ⊕ 𝑢) = 𝑤) |
54 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑘(+g‘𝐺)ℎ) → (𝑓 ⊕ 𝑢) = ((𝑘(+g‘𝐺)ℎ) ⊕ 𝑢)) |
55 | 54 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑓 = (𝑘(+g‘𝐺)ℎ) → ((𝑓 ⊕ 𝑢) = 𝑤 ↔ ((𝑘(+g‘𝐺)ℎ) ⊕ 𝑢) = 𝑤)) |
56 | 55 | rspcev 3561 |
. . . . . . . 8
⊢ (((𝑘(+g‘𝐺)ℎ) ∈ 𝑋 ∧ ((𝑘(+g‘𝐺)ℎ) ⊕ 𝑢) = 𝑤) → ∃𝑓 ∈ 𝑋 (𝑓 ⊕ 𝑢) = 𝑤) |
57 | 45, 53, 56 | syl2anc 584 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ ((ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) ∧ ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤))) → ∃𝑓 ∈ 𝑋 (𝑓 ⊕ 𝑢) = 𝑤) |
58 | 57 | expr 457 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) ∧ (ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋)) → (((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤) → ∃𝑓 ∈ 𝑋 (𝑓 ⊕ 𝑢) = 𝑤)) |
59 | 58 | rexlimdvva 3223 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → (∃ℎ ∈ 𝑋 ∃𝑘 ∈ 𝑋 ((ℎ ⊕ 𝑢) = 𝑣 ∧ (𝑘 ⊕ 𝑣) = 𝑤) → ∃𝑓 ∈ 𝑋 (𝑓 ⊕ 𝑢) = 𝑤)) |
60 | 39, 59 | syl5bir 242 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → ((∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑣 ∧ ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑣) = 𝑤) → ∃𝑓 ∈ 𝑋 (𝑓 ⊕ 𝑢) = 𝑤)) |
61 | 37, 38, 60 | mp2and 696 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → ∃𝑓 ∈ 𝑋 (𝑓 ⊕ 𝑢) = 𝑤) |
62 | 1 | gaorb 18913 |
. . 3
⊢ (𝑢 ∼ 𝑤 ↔ (𝑢 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃𝑓 ∈ 𝑋 (𝑓 ⊕ 𝑢) = 𝑤)) |
63 | 32, 36, 61, 62 | syl3anbrc 1342 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤)) → 𝑢 ∼ 𝑤) |
64 | 18 | adantr 481 |
. . . . . . . 8
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∈ 𝑌) → 𝐺 ∈ Grp) |
65 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
66 | 14, 65 | grpidcl 18607 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
67 | 64, 66 | syl 17 |
. . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) |
68 | 65 | gagrpid 18900 |
. . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑢) = 𝑢) |
69 | | oveq1 7282 |
. . . . . . . . 9
⊢ (ℎ = (0g‘𝐺) → (ℎ ⊕ 𝑢) = ((0g‘𝐺) ⊕ 𝑢)) |
70 | 69 | eqeq1d 2740 |
. . . . . . . 8
⊢ (ℎ = (0g‘𝐺) → ((ℎ ⊕ 𝑢) = 𝑢 ↔ ((0g‘𝐺) ⊕ 𝑢) = 𝑢)) |
71 | 70 | rspcev 3561 |
. . . . . . 7
⊢
(((0g‘𝐺) ∈ 𝑋 ∧ ((0g‘𝐺) ⊕ 𝑢) = 𝑢) → ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢) |
72 | 67, 68, 71 | syl2anc 584 |
. . . . . 6
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑢 ∈ 𝑌) → ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢) |
73 | 72 | ex 413 |
. . . . 5
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → (𝑢 ∈ 𝑌 → ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢)) |
74 | 73 | pm4.71rd 563 |
. . . 4
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → (𝑢 ∈ 𝑌 ↔ (∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢 ∧ 𝑢 ∈ 𝑌))) |
75 | | df-3an 1088 |
. . . . 5
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢) ↔ ((𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢)) |
76 | | anidm 565 |
. . . . . 6
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌) ↔ 𝑢 ∈ 𝑌) |
77 | 76 | anbi2ci 625 |
. . . . 5
⊢ (((𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢) ↔ (∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢 ∧ 𝑢 ∈ 𝑌)) |
78 | 75, 77 | bitri 274 |
. . . 4
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢) ↔ (∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢 ∧ 𝑢 ∈ 𝑌)) |
79 | 74, 78 | bitr4di 289 |
. . 3
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → (𝑢 ∈ 𝑌 ↔ (𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢))) |
80 | 1 | gaorb 18913 |
. . 3
⊢ (𝑢 ∼ 𝑢 ↔ (𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢)) |
81 | 79, 80 | bitr4di 289 |
. 2
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → (𝑢 ∈ 𝑌 ↔ 𝑢 ∼ 𝑢)) |
82 | 3, 31, 63, 81 | iserd 8524 |
1
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ∼ Er 𝑌) |