| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexr | Structured version Visualization version GIF version | ||
| Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5345. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwexr | ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw 5435 | . 2 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 2 | uniexg 7742 | . 2 ⊢ (𝒫 𝐴 ∈ 𝑉 → ∪ 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | eqeltrrid 2838 | 1 ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3463 𝒫 cpw 4580 ∪ cuni 4887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 df-ss 3948 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4888 |
| This theorem is referenced by: pwexb 7768 pwuninel 8282 pwwf 9829 r1pw 9867 isfin3 10318 dis2ndc 23414 numufl 23869 bj-discrmoore 37071 |
| Copyright terms: Public domain | W3C validator |