MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwexr Structured version   Visualization version   GIF version

Theorem pwexr 7705
Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5307. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexr (𝒫 𝐴𝑉𝐴 ∈ V)

Proof of Theorem pwexr
StepHypRef Expression
1 unipw 5397 . 2 𝒫 𝐴 = 𝐴
2 uniexg 7680 . 2 (𝒫 𝐴𝑉 𝒫 𝐴 ∈ V)
31, 2eqeltrrid 2833 1 (𝒫 𝐴𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3438  𝒫 cpw 4553   cuni 4861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-ss 3922  df-pw 4555  df-sn 4580  df-pr 4582  df-uni 4862
This theorem is referenced by:  pwexb  7706  pwuninel  8215  pwwf  9722  r1pw  9760  isfin3  10209  dis2ndc  23363  numufl  23818  bj-discrmoore  37084
  Copyright terms: Public domain W3C validator