MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwexr Structured version   Visualization version   GIF version

Theorem pwexr 7773
Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5369. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexr (𝒫 𝐴𝑉𝐴 ∈ V)

Proof of Theorem pwexr
StepHypRef Expression
1 unipw 5456 . 2 𝒫 𝐴 = 𝐴
2 uniexg 7751 . 2 (𝒫 𝐴𝑉 𝒫 𝐴 ∈ V)
31, 2eqeltrrid 2834 1 (𝒫 𝐴𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3473  𝒫 cpw 4606   cuni 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3475  df-un 3954  df-in 3956  df-ss 3966  df-pw 4608  df-sn 4633  df-pr 4635  df-uni 4913
This theorem is referenced by:  pwexb  7774  pwuninel  8287  pwfiOLD  9379  pwwf  9838  r1pw  9876  isfin3  10327  dis2ndc  23384  numufl  23839  bj-discrmoore  36623
  Copyright terms: Public domain W3C validator