MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwexr Structured version   Visualization version   GIF version

Theorem pwexr 7635
Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5291. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexr (𝒫 𝐴𝑉𝐴 ∈ V)

Proof of Theorem pwexr
StepHypRef Expression
1 unipw 5369 . 2 𝒫 𝐴 = 𝐴
2 uniexg 7613 . 2 (𝒫 𝐴𝑉 𝒫 𝐴 ∈ V)
31, 2eqeltrrid 2839 1 (𝒫 𝐴𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2101  Vcvv 3434  𝒫 cpw 4536   cuni 4841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-pw 4538  df-sn 4565  df-pr 4567  df-uni 4842
This theorem is referenced by:  pwexb  7636  pwuninel  8111  pwfiOLD  9142  pwwf  9593  r1pw  9631  isfin3  10080  dis2ndc  22639  numufl  23094  bj-discrmoore  35310
  Copyright terms: Public domain W3C validator