MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwexr Structured version   Visualization version   GIF version

Theorem pwexr 7693
Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5301. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexr (𝒫 𝐴𝑉𝐴 ∈ V)

Proof of Theorem pwexr
StepHypRef Expression
1 unipw 5389 . 2 𝒫 𝐴 = 𝐴
2 uniexg 7668 . 2 (𝒫 𝐴𝑉 𝒫 𝐴 ∈ V)
31, 2eqeltrrid 2834 1 (𝒫 𝐴𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Vcvv 3434  𝒫 cpw 4548   cuni 4857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436  df-un 3905  df-ss 3917  df-pw 4550  df-sn 4575  df-pr 4577  df-uni 4858
This theorem is referenced by:  pwexb  7694  pwuninel  8200  pwwf  9692  r1pw  9730  isfin3  10179  dis2ndc  23368  numufl  23823  bj-discrmoore  37124
  Copyright terms: Public domain W3C validator