![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexr | Structured version Visualization version GIF version |
Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5383. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
pwexr | ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 5470 | . 2 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | uniexg 7775 | . 2 ⊢ (𝒫 𝐴 ∈ 𝑉 → ∪ 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | eqeltrrid 2849 | 1 ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: pwexb 7801 pwuninel 8316 pwfiOLD 9417 pwwf 9876 r1pw 9914 isfin3 10365 dis2ndc 23489 numufl 23944 bj-discrmoore 37077 |
Copyright terms: Public domain | W3C validator |