| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexr | Structured version Visualization version GIF version | ||
| Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5320. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwexr | ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw 5410 | . 2 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 2 | uniexg 7716 | . 2 ⊢ (𝒫 𝐴 ∈ 𝑉 → ∪ 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | eqeltrrid 2833 | 1 ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-pw 4565 df-sn 4590 df-pr 4592 df-uni 4872 |
| This theorem is referenced by: pwexb 7742 pwuninel 8254 pwwf 9760 r1pw 9798 isfin3 10249 dis2ndc 23347 numufl 23802 bj-discrmoore 37099 |
| Copyright terms: Public domain | W3C validator |