Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwexr | Structured version Visualization version GIF version |
Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5291. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
pwexr | ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 5369 | . 2 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | uniexg 7613 | . 2 ⊢ (𝒫 𝐴 ∈ 𝑉 → ∪ 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | eqeltrrid 2839 | 1 ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2101 Vcvv 3434 𝒫 cpw 4536 ∪ cuni 4841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-pw 4538 df-sn 4565 df-pr 4567 df-uni 4842 |
This theorem is referenced by: pwexb 7636 pwuninel 8111 pwfiOLD 9142 pwwf 9593 r1pw 9631 isfin3 10080 dis2ndc 22639 numufl 23094 bj-discrmoore 35310 |
Copyright terms: Public domain | W3C validator |