![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexr | Structured version Visualization version GIF version |
Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5036. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
pwexr | ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 5110 | . 2 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | uniexg 7190 | . 2 ⊢ (𝒫 𝐴 ∈ 𝑉 → ∪ 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | syl5eqelr 2884 | 1 ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 Vcvv 3386 𝒫 cpw 4350 ∪ cuni 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-rex 3096 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-pw 4352 df-sn 4370 df-pr 4372 df-uni 4630 |
This theorem is referenced by: pwexb 7209 pwuninel 7640 pwfi 8504 pwwf 8921 r1pw 8959 isfin3 9407 dis2ndc 21591 numufl 22046 bj-discrmoore 33558 |
Copyright terms: Public domain | W3C validator |