![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axregndlem1 | Structured version Visualization version GIF version |
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) |
Ref | Expression |
---|---|
axregndlem1 | ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2206 | . 2 ⊢ (𝑥 ∈ 𝑦 → ∃𝑥 𝑥 ∈ 𝑦) | |
2 | nfae 2468 | . . 3 ⊢ Ⅎ𝑥∀𝑥 𝑥 = 𝑧 | |
3 | nfae 2468 | . . . . . 6 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑧 | |
4 | elirrv 8657 | . . . . . . . . 9 ⊢ ¬ 𝑥 ∈ 𝑥 | |
5 | elequ1 2152 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) | |
6 | 4, 5 | mtbii 315 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥) |
7 | 6 | sps 2209 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥) |
8 | 7 | pm2.21d 119 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) |
9 | 3, 8 | alrimi 2238 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) |
10 | 9 | anim2i 595 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑥 = 𝑧) → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
11 | 10 | expcom 398 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
12 | 2, 11 | eximd 2241 | . 2 ⊢ (∀𝑥 𝑥 = 𝑧 → (∃𝑥 𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
13 | 1, 12 | syl5 34 | 1 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∀wal 1629 ∃wex 1852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-reg 8653 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-v 3353 df-dif 3726 df-un 3728 df-nul 4064 df-sn 4317 df-pr 4319 |
This theorem is referenced by: axregndlem2 9627 axregnd 9628 |
Copyright terms: Public domain | W3C validator |