MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axregndlem1 Structured version   Visualization version   GIF version

Theorem axregndlem1 10460
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
axregndlem1 (∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))

Proof of Theorem axregndlem1
StepHypRef Expression
1 19.8a 2173 . 2 (𝑥𝑦 → ∃𝑥 𝑥𝑦)
2 nfae 2431 . . 3 𝑥𝑥 𝑥 = 𝑧
3 nfae 2431 . . . . . 6 𝑧𝑥 𝑥 = 𝑧
4 elirrv 9454 . . . . . . . . 9 ¬ 𝑥𝑥
5 elequ1 2112 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝑥𝑧𝑥))
64, 5mtbii 325 . . . . . . . 8 (𝑥 = 𝑧 → ¬ 𝑧𝑥)
76sps 2177 . . . . . . 7 (∀𝑥 𝑥 = 𝑧 → ¬ 𝑧𝑥)
87pm2.21d 121 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → (𝑧𝑥 → ¬ 𝑧𝑦))
93, 8alrimi 2205 . . . . 5 (∀𝑥 𝑥 = 𝑧 → ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))
109anim2i 617 . . . 4 ((𝑥𝑦 ∧ ∀𝑥 𝑥 = 𝑧) → (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
1110expcom 414 . . 3 (∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
122, 11eximd 2208 . 2 (∀𝑥 𝑥 = 𝑧 → (∃𝑥 𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
131, 12syl5 34 1 (∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1538  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370  ax-ext 2707  ax-sep 5244  ax-pr 5373  ax-reg 9450
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-v 3443  df-un 3903  df-sn 4575  df-pr 4577
This theorem is referenced by:  axregndlem2  10461  axregnd  10462
  Copyright terms: Public domain W3C validator