![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axregndlem1 | Structured version Visualization version GIF version |
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2365. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axregndlem1 | ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2166 | . 2 ⊢ (𝑥 ∈ 𝑦 → ∃𝑥 𝑥 ∈ 𝑦) | |
2 | nfae 2426 | . . 3 ⊢ Ⅎ𝑥∀𝑥 𝑥 = 𝑧 | |
3 | nfae 2426 | . . . . . 6 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑧 | |
4 | elirrv 9593 | . . . . . . . . 9 ⊢ ¬ 𝑥 ∈ 𝑥 | |
5 | elequ1 2105 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) | |
6 | 4, 5 | mtbii 326 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥) |
7 | 6 | sps 2170 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥) |
8 | 7 | pm2.21d 121 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) |
9 | 3, 8 | alrimi 2198 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) |
10 | 9 | anim2i 616 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑥 = 𝑧) → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
11 | 10 | expcom 413 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
12 | 2, 11 | eximd 2201 | . 2 ⊢ (∀𝑥 𝑥 = 𝑧 → (∃𝑥 𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
13 | 1, 12 | syl5 34 | 1 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1531 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-13 2365 ax-ext 2697 ax-sep 5292 ax-pr 5420 ax-reg 9589 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-v 3470 df-un 3948 df-sn 4624 df-pr 4626 |
This theorem is referenced by: axregndlem2 10600 axregnd 10601 |
Copyright terms: Public domain | W3C validator |