Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axregndlem1 | Structured version Visualization version GIF version |
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axregndlem1 | ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2176 | . 2 ⊢ (𝑥 ∈ 𝑦 → ∃𝑥 𝑥 ∈ 𝑦) | |
2 | nfae 2433 | . . 3 ⊢ Ⅎ𝑥∀𝑥 𝑥 = 𝑧 | |
3 | nfae 2433 | . . . . . 6 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑧 | |
4 | elirrv 9285 | . . . . . . . . 9 ⊢ ¬ 𝑥 ∈ 𝑥 | |
5 | elequ1 2115 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) | |
6 | 4, 5 | mtbii 325 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥) |
7 | 6 | sps 2180 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥) |
8 | 7 | pm2.21d 121 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) |
9 | 3, 8 | alrimi 2209 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) |
10 | 9 | anim2i 616 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑥 = 𝑧) → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
11 | 10 | expcom 413 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
12 | 2, 11 | eximd 2212 | . 2 ⊢ (∀𝑥 𝑥 = 𝑧 → (∃𝑥 𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
13 | 1, 12 | syl5 34 | 1 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 |
This theorem is referenced by: axregndlem2 10290 axregnd 10291 |
Copyright terms: Public domain | W3C validator |