![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimaexgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of funimaexg 6527 as of 19-Dec-2024. (Contributed by NM, 10-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funimaexgOLD | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq2 5968 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐴 “ 𝑤) = (𝐴 “ 𝐵)) | |
2 | 1 | eleq1d 2824 | . . . 4 ⊢ (𝑤 = 𝐵 → ((𝐴 “ 𝑤) ∈ V ↔ (𝐴 “ 𝐵) ∈ V)) |
3 | 2 | imbi2d 341 | . . 3 ⊢ (𝑤 = 𝐵 → ((Fun 𝐴 → (𝐴 “ 𝑤) ∈ V) ↔ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V))) |
4 | dffun5 6453 | . . . 4 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) | |
5 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑧〈𝑥, 𝑦〉 ∈ 𝐴 | |
6 | 5 | axrep4 5215 | . . . . 5 ⊢ (∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
7 | isset 3446 | . . . . . 6 ⊢ ((𝐴 “ 𝑤) ∈ V ↔ ∃𝑧 𝑧 = (𝐴 “ 𝑤)) | |
8 | dfima3 5975 | . . . . . . . . 9 ⊢ (𝐴 “ 𝑤) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
9 | 8 | eqeq2i 2752 | . . . . . . . 8 ⊢ (𝑧 = (𝐴 “ 𝑤) ↔ 𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)}) |
10 | abeq2 2873 | . . . . . . . 8 ⊢ (𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) | |
11 | 9, 10 | bitri 274 | . . . . . . 7 ⊢ (𝑧 = (𝐴 “ 𝑤) ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
12 | 11 | exbii 1851 | . . . . . 6 ⊢ (∃𝑧 𝑧 = (𝐴 “ 𝑤) ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
13 | 7, 12 | bitri 274 | . . . . 5 ⊢ ((𝐴 “ 𝑤) ∈ V ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
14 | 6, 13 | sylibr 233 | . . . 4 ⊢ (∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → (𝐴 “ 𝑤) ∈ V) |
15 | 4, 14 | simplbiim 505 | . . 3 ⊢ (Fun 𝐴 → (𝐴 “ 𝑤) ∈ V) |
16 | 3, 15 | vtoclg 3506 | . 2 ⊢ (𝐵 ∈ 𝐶 → (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V)) |
17 | 16 | impcom 408 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2107 {cab 2716 Vcvv 3433 〈cop 4568 “ cima 5593 Rel wrel 5595 Fun wfun 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6439 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |