MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexgOLD Structured version   Visualization version   GIF version

Theorem funimaexgOLD 6589
Description: Obsolete version of funimaexg 6588 as of 19-Dec-2024. (Contributed by NM, 10-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
funimaexgOLD ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexgOLD
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaeq2 6010 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
21eleq1d 2819 . . . 4 (𝑤 = 𝐵 → ((𝐴𝑤) ∈ V ↔ (𝐴𝐵) ∈ V))
32imbi2d 341 . . 3 (𝑤 = 𝐵 → ((Fun 𝐴 → (𝐴𝑤) ∈ V) ↔ (Fun 𝐴 → (𝐴𝐵) ∈ V)))
4 dffun5 6514 . . . 4 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
5 nfv 1918 . . . . . 6 𝑧𝑥, 𝑦⟩ ∈ 𝐴
65axrep4 5248 . . . . 5 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
7 isset 3457 . . . . . 6 ((𝐴𝑤) ∈ V ↔ ∃𝑧 𝑧 = (𝐴𝑤))
8 dfima3 6017 . . . . . . . . 9 (𝐴𝑤) = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
98eqeq2i 2746 . . . . . . . 8 (𝑧 = (𝐴𝑤) ↔ 𝑧 = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)})
10 eqab 2874 . . . . . . . 8 (𝑧 = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
119, 10bitri 275 . . . . . . 7 (𝑧 = (𝐴𝑤) ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
1211exbii 1851 . . . . . 6 (∃𝑧 𝑧 = (𝐴𝑤) ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
137, 12bitri 275 . . . . 5 ((𝐴𝑤) ∈ V ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
146, 13sylibr 233 . . . 4 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → (𝐴𝑤) ∈ V)
154, 14simplbiim 506 . . 3 (Fun 𝐴 → (𝐴𝑤) ∈ V)
163, 15vtoclg 3524 . 2 (𝐵𝐶 → (Fun 𝐴 → (𝐴𝐵) ∈ V))
1716impcom 409 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wex 1782  wcel 2107  {cab 2710  Vcvv 3444  cop 4593  cima 5637  Rel wrel 5639  Fun wfun 6491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-fun 6499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator