Step | Hyp | Ref
| Expression |
1 | | axtglowdim2ALTV.g |
. . . 4
β’ (π β πΊ β
TarskiG2D) |
2 | | istrkg2d.p |
. . . . 5
β’ π = (BaseβπΊ) |
3 | | istrkg2d.d |
. . . . 5
β’ β =
(distβπΊ) |
4 | | istrkg2d.i |
. . . . 5
β’ πΌ = (ItvβπΊ) |
5 | 2, 3, 4 | istrkg2d 33678 |
. . . 4
β’ (πΊ β TarskiG2D
β (πΊ β V β§
(βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) |
6 | 1, 5 | sylib 217 |
. . 3
β’ (π β (πΊ β V β§ (βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) |
7 | 6 | simprd 497 |
. 2
β’ (π β (βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))))) |
8 | 7 | simpld 496 |
1
β’ (π β βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) |