Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axtglowdim2ALTV Structured version   Visualization version   GIF version

Theorem axtglowdim2ALTV 33679
Description: Alternate version of axtglowdim2 27721. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
istrkg2d.p 𝑃 = (Baseβ€˜πΊ)
istrkg2d.d βˆ’ = (distβ€˜πΊ)
istrkg2d.i 𝐼 = (Itvβ€˜πΊ)
axtglowdim2ALTV.g (πœ‘ β†’ 𝐺 ∈ TarskiG2D)
Assertion
Ref Expression
axtglowdim2ALTV (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)))
Distinct variable groups:   π‘₯, βˆ’ ,𝑦,𝑧   π‘₯,𝐼,𝑦,𝑧   π‘₯,𝑃,𝑦,𝑧
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑧)   𝐺(π‘₯,𝑦,𝑧)

Proof of Theorem axtglowdim2ALTV
Dummy variables 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtglowdim2ALTV.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG2D)
2 istrkg2d.p . . . . 5 𝑃 = (Baseβ€˜πΊ)
3 istrkg2d.d . . . . 5 βˆ’ = (distβ€˜πΊ)
4 istrkg2d.i . . . . 5 𝐼 = (Itvβ€˜πΊ)
52, 3, 4istrkg2d 33678 . . . 4 (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))))))
61, 5sylib 217 . . 3 (πœ‘ β†’ (𝐺 ∈ V ∧ (βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))))))
76simprd 497 . 2 (πœ‘ β†’ (βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)))))
87simpld 496 1 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∨ w3o 1087   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  distcds 17206  Itvcitv 27684  TarskiG2Dcstrkg2d 33676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-trkg2d 33677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator