Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axtgupdim2ALTV Structured version   Visualization version   GIF version

Theorem axtgupdim2ALTV 34681
Description: Alternate version of axtgupdim2 28449. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
istrkg2d.p 𝑃 = (Base‘𝐺)
istrkg2d.d = (dist‘𝐺)
istrkg2d.i 𝐼 = (Itv‘𝐺)
axtgupdim2ALTV.x (𝜑𝑋𝑃)
axtgupdim2ALTV.y (𝜑𝑌𝑃)
axtgupdim2ALTV.z (𝜑𝑍𝑃)
axtgupdim2ALTV.u (𝜑𝑈𝑃)
axtgupdim2ALTV.v (𝜑𝑉𝑃)
axtgupdim2ALTV.0 (𝜑𝑈𝑉)
axtgupdim2ALTV.1 (𝜑 → (𝑋 𝑈) = (𝑋 𝑉))
axtgupdim2ALTV.2 (𝜑 → (𝑌 𝑈) = (𝑌 𝑉))
axtgupdim2ALTV.3 (𝜑 → (𝑍 𝑈) = (𝑍 𝑉))
axtgupdim2ALTV.g (𝜑𝐺 ∈ TarskiG2D)
Assertion
Ref Expression
axtgupdim2ALTV (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))

Proof of Theorem axtgupdim2ALTV
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgupdim2ALTV.1 . . 3 (𝜑 → (𝑋 𝑈) = (𝑋 𝑉))
2 axtgupdim2ALTV.2 . . 3 (𝜑 → (𝑌 𝑈) = (𝑌 𝑉))
3 axtgupdim2ALTV.3 . . 3 (𝜑 → (𝑍 𝑈) = (𝑍 𝑉))
41, 2, 33jca 1128 . 2 (𝜑 → ((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)))
5 axtgupdim2ALTV.0 . 2 (𝜑𝑈𝑉)
6 axtgupdim2ALTV.g . . . . . 6 (𝜑𝐺 ∈ TarskiG2D)
7 istrkg2d.p . . . . . . 7 𝑃 = (Base‘𝐺)
8 istrkg2d.d . . . . . . 7 = (dist‘𝐺)
9 istrkg2d.i . . . . . . 7 𝐼 = (Itv‘𝐺)
107, 8, 9istrkg2d 34679 . . . . . 6 (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
116, 10sylib 218 . . . . 5 (𝜑 → (𝐺 ∈ V ∧ (∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
1211simprrd 773 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
13 axtgupdim2ALTV.x . . . . 5 (𝜑𝑋𝑃)
14 axtgupdim2ALTV.y . . . . 5 (𝜑𝑌𝑃)
15 axtgupdim2ALTV.z . . . . 5 (𝜑𝑍𝑃)
16 oveq1 7353 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑢) = (𝑋 𝑢))
17 oveq1 7353 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑣) = (𝑋 𝑣))
1816, 17eqeq12d 2747 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥 𝑢) = (𝑥 𝑣) ↔ (𝑋 𝑢) = (𝑋 𝑣)))
19183anbi1d 1442 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ↔ ((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣))))
2019anbi1d 631 . . . . . . . 8 (𝑥 = 𝑋 → ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣)))
21 oveq1 7353 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦))
2221eleq2d 2817 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦)))
23 eleq1 2819 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦)))
24 oveq1 7353 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2524eleq2d 2817 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
2622, 23, 253orbi123d 1437 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
2720, 26imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
28272ralbidv 3196 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
29 oveq1 7353 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 𝑢) = (𝑌 𝑢))
30 oveq1 7353 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 𝑣) = (𝑌 𝑣))
3129, 30eqeq12d 2747 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑦 𝑢) = (𝑦 𝑣) ↔ (𝑌 𝑢) = (𝑌 𝑣)))
32313anbi2d 1443 . . . . . . . . 9 (𝑦 = 𝑌 → (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ↔ ((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣))))
3332anbi1d 631 . . . . . . . 8 (𝑦 = 𝑌 → ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣)))
34 oveq2 7354 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌))
3534eleq2d 2817 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
36 oveq2 7354 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
3736eleq2d 2817 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
38 eleq1 2819 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
3935, 37, 383orbi123d 1437 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
4033, 39imbi12d 344 . . . . . . 7 (𝑦 = 𝑌 → (((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
41402ralbidv 3196 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
42 oveq1 7353 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 𝑢) = (𝑍 𝑢))
43 oveq1 7353 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 𝑣) = (𝑍 𝑣))
4442, 43eqeq12d 2747 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 𝑢) = (𝑧 𝑣) ↔ (𝑍 𝑢) = (𝑍 𝑣)))
45443anbi3d 1444 . . . . . . . . 9 (𝑧 = 𝑍 → (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ↔ ((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣))))
4645anbi1d 631 . . . . . . . 8 (𝑧 = 𝑍 → ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣)))
47 eleq1 2819 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
48 oveq1 7353 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌))
4948eleq2d 2817 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
50 oveq2 7354 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
5150eleq2d 2817 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
5247, 49, 513orbi123d 1437 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
5346, 52imbi12d 344 . . . . . . 7 (𝑧 = 𝑍 → (((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
54532ralbidv 3196 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
5528, 41, 54rspc3v 3588 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
5613, 14, 15, 55syl3anc 1373 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
5712, 56mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
58 axtgupdim2ALTV.u . . . 4 (𝜑𝑈𝑃)
59 axtgupdim2ALTV.v . . . 4 (𝜑𝑉𝑃)
60 oveq2 7354 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑋 𝑢) = (𝑋 𝑈))
6160eqeq1d 2733 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑋 𝑢) = (𝑋 𝑣) ↔ (𝑋 𝑈) = (𝑋 𝑣)))
62 oveq2 7354 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑌 𝑢) = (𝑌 𝑈))
6362eqeq1d 2733 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑌 𝑢) = (𝑌 𝑣) ↔ (𝑌 𝑈) = (𝑌 𝑣)))
64 oveq2 7354 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑍 𝑢) = (𝑍 𝑈))
6564eqeq1d 2733 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑍 𝑢) = (𝑍 𝑣) ↔ (𝑍 𝑈) = (𝑍 𝑣)))
6661, 63, 653anbi123d 1438 . . . . . . 7 (𝑢 = 𝑈 → (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ↔ ((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣))))
67 neeq1 2990 . . . . . . 7 (𝑢 = 𝑈 → (𝑢𝑣𝑈𝑣))
6866, 67anbi12d 632 . . . . . 6 (𝑢 = 𝑈 → ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣)))
6968imbi1d 341 . . . . 5 (𝑢 = 𝑈 → (((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ((((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
70 oveq2 7354 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑋 𝑣) = (𝑋 𝑉))
7170eqeq2d 2742 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑋 𝑈) = (𝑋 𝑣) ↔ (𝑋 𝑈) = (𝑋 𝑉)))
72 oveq2 7354 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑌 𝑣) = (𝑌 𝑉))
7372eqeq2d 2742 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑌 𝑈) = (𝑌 𝑣) ↔ (𝑌 𝑈) = (𝑌 𝑉)))
74 oveq2 7354 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑍 𝑣) = (𝑍 𝑉))
7574eqeq2d 2742 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑍 𝑈) = (𝑍 𝑣) ↔ (𝑍 𝑈) = (𝑍 𝑉)))
7671, 73, 753anbi123d 1438 . . . . . . 7 (𝑣 = 𝑉 → (((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ↔ ((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉))))
77 neeq2 2991 . . . . . . 7 (𝑣 = 𝑉 → (𝑈𝑣𝑈𝑉))
7876, 77anbi12d 632 . . . . . 6 (𝑣 = 𝑉 → ((((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣) ↔ (((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉)))
7978imbi1d 341 . . . . 5 (𝑣 = 𝑉 → (((((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
8069, 79rspc2v 3583 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) → ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
8158, 59, 80syl2anc 584 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) → ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
8257, 81mpd 15 . 2 (𝜑 → ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
834, 5, 82mp2and 699 1 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  Itvcitv 28411  TarskiG2Dcstrkg2d 34677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-trkg2d 34678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator