Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axtgupdim2ALTV Structured version   Visualization version   GIF version

Theorem axtgupdim2ALTV 32648
Description: Alternate version of axtgupdim2 26832. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
istrkg2d.p 𝑃 = (Base‘𝐺)
istrkg2d.d = (dist‘𝐺)
istrkg2d.i 𝐼 = (Itv‘𝐺)
axtgupdim2ALTV.x (𝜑𝑋𝑃)
axtgupdim2ALTV.y (𝜑𝑌𝑃)
axtgupdim2ALTV.z (𝜑𝑍𝑃)
axtgupdim2ALTV.u (𝜑𝑈𝑃)
axtgupdim2ALTV.v (𝜑𝑉𝑃)
axtgupdim2ALTV.0 (𝜑𝑈𝑉)
axtgupdim2ALTV.1 (𝜑 → (𝑋 𝑈) = (𝑋 𝑉))
axtgupdim2ALTV.2 (𝜑 → (𝑌 𝑈) = (𝑌 𝑉))
axtgupdim2ALTV.3 (𝜑 → (𝑍 𝑈) = (𝑍 𝑉))
axtgupdim2ALTV.g (𝜑𝐺 ∈ TarskiG2D)
Assertion
Ref Expression
axtgupdim2ALTV (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))

Proof of Theorem axtgupdim2ALTV
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgupdim2ALTV.1 . . 3 (𝜑 → (𝑋 𝑈) = (𝑋 𝑉))
2 axtgupdim2ALTV.2 . . 3 (𝜑 → (𝑌 𝑈) = (𝑌 𝑉))
3 axtgupdim2ALTV.3 . . 3 (𝜑 → (𝑍 𝑈) = (𝑍 𝑉))
41, 2, 33jca 1127 . 2 (𝜑 → ((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)))
5 axtgupdim2ALTV.0 . 2 (𝜑𝑈𝑉)
6 axtgupdim2ALTV.g . . . . . 6 (𝜑𝐺 ∈ TarskiG2D)
7 istrkg2d.p . . . . . . 7 𝑃 = (Base‘𝐺)
8 istrkg2d.d . . . . . . 7 = (dist‘𝐺)
9 istrkg2d.i . . . . . . 7 𝐼 = (Itv‘𝐺)
107, 8, 9istrkg2d 32646 . . . . . 6 (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
116, 10sylib 217 . . . . 5 (𝜑 → (𝐺 ∈ V ∧ (∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
1211simprrd 771 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
13 axtgupdim2ALTV.x . . . . 5 (𝜑𝑋𝑃)
14 axtgupdim2ALTV.y . . . . 5 (𝜑𝑌𝑃)
15 axtgupdim2ALTV.z . . . . 5 (𝜑𝑍𝑃)
16 oveq1 7282 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑢) = (𝑋 𝑢))
17 oveq1 7282 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑣) = (𝑋 𝑣))
1816, 17eqeq12d 2754 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥 𝑢) = (𝑥 𝑣) ↔ (𝑋 𝑢) = (𝑋 𝑣)))
19183anbi1d 1439 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ↔ ((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣))))
2019anbi1d 630 . . . . . . . 8 (𝑥 = 𝑋 → ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣)))
21 oveq1 7282 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦))
2221eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦)))
23 eleq1 2826 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦)))
24 oveq1 7282 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2524eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
2622, 23, 253orbi123d 1434 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
2720, 26imbi12d 345 . . . . . . 7 (𝑥 = 𝑋 → (((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
28272ralbidv 3129 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
29 oveq1 7282 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 𝑢) = (𝑌 𝑢))
30 oveq1 7282 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 𝑣) = (𝑌 𝑣))
3129, 30eqeq12d 2754 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑦 𝑢) = (𝑦 𝑣) ↔ (𝑌 𝑢) = (𝑌 𝑣)))
32313anbi2d 1440 . . . . . . . . 9 (𝑦 = 𝑌 → (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ↔ ((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣))))
3332anbi1d 630 . . . . . . . 8 (𝑦 = 𝑌 → ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣)))
34 oveq2 7283 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌))
3534eleq2d 2824 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
36 oveq2 7283 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
3736eleq2d 2824 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
38 eleq1 2826 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
3935, 37, 383orbi123d 1434 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
4033, 39imbi12d 345 . . . . . . 7 (𝑦 = 𝑌 → (((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
41402ralbidv 3129 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
42 oveq1 7282 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 𝑢) = (𝑍 𝑢))
43 oveq1 7282 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 𝑣) = (𝑍 𝑣))
4442, 43eqeq12d 2754 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 𝑢) = (𝑧 𝑣) ↔ (𝑍 𝑢) = (𝑍 𝑣)))
45443anbi3d 1441 . . . . . . . . 9 (𝑧 = 𝑍 → (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ↔ ((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣))))
4645anbi1d 630 . . . . . . . 8 (𝑧 = 𝑍 → ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣)))
47 eleq1 2826 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
48 oveq1 7282 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌))
4948eleq2d 2824 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
50 oveq2 7283 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
5150eleq2d 2824 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
5247, 49, 513orbi123d 1434 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
5346, 52imbi12d 345 . . . . . . 7 (𝑧 = 𝑍 → (((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
54532ralbidv 3129 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
5528, 41, 54rspc3v 3573 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
5613, 14, 15, 55syl3anc 1370 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
5712, 56mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
58 axtgupdim2ALTV.u . . . 4 (𝜑𝑈𝑃)
59 axtgupdim2ALTV.v . . . 4 (𝜑𝑉𝑃)
60 oveq2 7283 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑋 𝑢) = (𝑋 𝑈))
6160eqeq1d 2740 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑋 𝑢) = (𝑋 𝑣) ↔ (𝑋 𝑈) = (𝑋 𝑣)))
62 oveq2 7283 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑌 𝑢) = (𝑌 𝑈))
6362eqeq1d 2740 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑌 𝑢) = (𝑌 𝑣) ↔ (𝑌 𝑈) = (𝑌 𝑣)))
64 oveq2 7283 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑍 𝑢) = (𝑍 𝑈))
6564eqeq1d 2740 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑍 𝑢) = (𝑍 𝑣) ↔ (𝑍 𝑈) = (𝑍 𝑣)))
6661, 63, 653anbi123d 1435 . . . . . . 7 (𝑢 = 𝑈 → (((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ↔ ((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣))))
67 neeq1 3006 . . . . . . 7 (𝑢 = 𝑈 → (𝑢𝑣𝑈𝑣))
6866, 67anbi12d 631 . . . . . 6 (𝑢 = 𝑈 → ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) ↔ (((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣)))
6968imbi1d 342 . . . . 5 (𝑢 = 𝑈 → (((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ((((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
70 oveq2 7283 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑋 𝑣) = (𝑋 𝑉))
7170eqeq2d 2749 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑋 𝑈) = (𝑋 𝑣) ↔ (𝑋 𝑈) = (𝑋 𝑉)))
72 oveq2 7283 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑌 𝑣) = (𝑌 𝑉))
7372eqeq2d 2749 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑌 𝑈) = (𝑌 𝑣) ↔ (𝑌 𝑈) = (𝑌 𝑉)))
74 oveq2 7283 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑍 𝑣) = (𝑍 𝑉))
7574eqeq2d 2749 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑍 𝑈) = (𝑍 𝑣) ↔ (𝑍 𝑈) = (𝑍 𝑉)))
7671, 73, 753anbi123d 1435 . . . . . . 7 (𝑣 = 𝑉 → (((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ↔ ((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉))))
77 neeq2 3007 . . . . . . 7 (𝑣 = 𝑉 → (𝑈𝑣𝑈𝑉))
7876, 77anbi12d 631 . . . . . 6 (𝑣 = 𝑉 → ((((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣) ↔ (((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉)))
7978imbi1d 342 . . . . 5 (𝑣 = 𝑉 → (((((𝑋 𝑈) = (𝑋 𝑣) ∧ (𝑌 𝑈) = (𝑌 𝑣) ∧ (𝑍 𝑈) = (𝑍 𝑣)) ∧ 𝑈𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
8069, 79rspc2v 3570 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) → ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
8158, 59, 80syl2anc 584 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((((𝑋 𝑢) = (𝑋 𝑣) ∧ (𝑌 𝑢) = (𝑌 𝑣) ∧ (𝑍 𝑢) = (𝑍 𝑣)) ∧ 𝑢𝑣) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) → ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
8257, 81mpd 15 . 2 (𝜑 → ((((𝑋 𝑈) = (𝑋 𝑉) ∧ (𝑌 𝑈) = (𝑌 𝑉) ∧ (𝑍 𝑈) = (𝑍 𝑉)) ∧ 𝑈𝑉) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
834, 5, 82mp2and 696 1 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  Itvcitv 26794  TarskiG2Dcstrkg2d 32644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-trkg2d 32645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator