| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelmpt | Structured version Visualization version GIF version | ||
| Description: The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020.) |
| Ref | Expression |
|---|---|
| bj-0nelmpt | ⊢ ¬ ∅ ∈ (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelopab 5503 | . 2 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | df-mpt 5171 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 2 | eqcomi 2739 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 4 | 3 | eleq2i 2821 | . 2 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ ∅ ∈ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 5 | 1, 4 | mtbi 322 | 1 ⊢ ¬ ∅ ∈ (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∅c0 4281 {copab 5151 ↦ cmpt 5170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-opab 5152 df-mpt 5171 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |