Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelmpt Structured version   Visualization version   GIF version

Theorem bj-0nelmpt 37117
Description: The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-0nelmpt ¬ ∅ ∈ (𝑥𝐴𝐵)

Proof of Theorem bj-0nelmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0nelopab 5572 . 2 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 df-mpt 5226 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
32eqcomi 2746 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = (𝑥𝐴𝐵)
43eleq2i 2833 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∅ ∈ (𝑥𝐴𝐵))
51, 4mtbi 322 1 ¬ ∅ ∈ (𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  c0 4333  {copab 5205  cmpt 5225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-opab 5206  df-mpt 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator