|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelmpt | Structured version Visualization version GIF version | ||
| Description: The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020.) | 
| Ref | Expression | 
|---|---|
| bj-0nelmpt | ⊢ ¬ ∅ ∈ (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0nelopab 5572 | . 2 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | df-mpt 5226 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 2 | eqcomi 2746 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 4 | 3 | eleq2i 2833 | . 2 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ ∅ ∈ (𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 5 | 1, 4 | mtbi 322 | 1 ⊢ ¬ ∅ ∈ (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4333 {copab 5205 ↦ cmpt 5225 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 df-mpt 5226 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |