Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelmpt Structured version   Visualization version   GIF version

Theorem bj-0nelmpt 37134
Description: The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-0nelmpt ¬ ∅ ∈ (𝑥𝐴𝐵)

Proof of Theorem bj-0nelmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0nelopab 5542 . 2 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 df-mpt 5202 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
32eqcomi 2744 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = (𝑥𝐴𝐵)
43eleq2i 2826 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∅ ∈ (𝑥𝐴𝐵))
51, 4mtbi 322 1 ¬ ∅ ∈ (𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  c0 4308  {copab 5181  cmpt 5201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-opab 5182  df-mpt 5202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator