![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mptval | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020.) |
Ref | Expression |
---|---|
bj-mptval.nf | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
bj-mptval | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-mptval.nf | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | fnmptf 6716 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
3 | fnbrfvb 6973 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌)) | |
4 | 3 | ex 412 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) |
5 | 2, 4 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 class class class wbr 5166 ↦ cmpt 5249 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |