Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mptval | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020.) |
Ref | Expression |
---|---|
bj-mptval.nf | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
bj-mptval | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-mptval.nf | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | fnmptf 6569 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
3 | fnbrfvb 6822 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌)) | |
4 | 3 | ex 413 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) |
5 | 2, 4 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 class class class wbr 5074 ↦ cmpt 5157 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |