Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mptval Structured version   Visualization version   GIF version

Theorem bj-mptval 37100
Description: Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020.)
Hypothesis
Ref Expression
bj-mptval.nf 𝑥𝐴
Assertion
Ref Expression
bj-mptval (∀𝑥𝐴 𝐵𝑉 → (𝑋𝐴 → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌)))

Proof of Theorem bj-mptval
StepHypRef Expression
1 bj-mptval.nf . . 3 𝑥𝐴
21fnmptf 6705 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
3 fnbrfvb 6960 . . 3 (((𝑥𝐴𝐵) Fn 𝐴𝑋𝐴) → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌))
43ex 412 . 2 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑋𝐴 → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌)))
52, 4syl 17 1 (∀𝑥𝐴 𝐵𝑉 → (𝑋𝐴 → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wnfc 2888  wral 3059   class class class wbr 5148  cmpt 5231   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator