Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mptval Structured version   Visualization version   GIF version

Theorem bj-mptval 37083
Description: Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020.)
Hypothesis
Ref Expression
bj-mptval.nf 𝑥𝐴
Assertion
Ref Expression
bj-mptval (∀𝑥𝐴 𝐵𝑉 → (𝑋𝐴 → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌)))

Proof of Theorem bj-mptval
StepHypRef Expression
1 bj-mptval.nf . . 3 𝑥𝐴
21fnmptf 6716 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
3 fnbrfvb 6973 . . 3 (((𝑥𝐴𝐵) Fn 𝐴𝑋𝐴) → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌))
43ex 412 . 2 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑋𝐴 → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌)))
52, 4syl 17 1 (∀𝑥𝐴 𝐵𝑉 → (𝑋𝐴 → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wnfc 2893  wral 3067   class class class wbr 5166  cmpt 5249   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator