Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mptval Structured version   Visualization version   GIF version

Theorem bj-mptval 37112
Description: Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020.)
Hypothesis
Ref Expression
bj-mptval.nf 𝑥𝐴
Assertion
Ref Expression
bj-mptval (∀𝑥𝐴 𝐵𝑉 → (𝑋𝐴 → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌)))

Proof of Theorem bj-mptval
StepHypRef Expression
1 bj-mptval.nf . . 3 𝑥𝐴
21fnmptf 6657 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
3 fnbrfvb 6914 . . 3 (((𝑥𝐴𝐵) Fn 𝐴𝑋𝐴) → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌))
43ex 412 . 2 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑋𝐴 → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌)))
52, 4syl 17 1 (∀𝑥𝐴 𝐵𝑉 → (𝑋𝐴 → (((𝑥𝐴𝐵)‘𝑋) = 𝑌𝑋(𝑥𝐴𝐵)𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wnfc 2877  wral 3045   class class class wbr 5110  cmpt 5191   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator