![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mptval | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020.) |
Ref | Expression |
---|---|
bj-mptval.nf | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
bj-mptval | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-mptval.nf | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | fnmptf 6250 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
3 | fnbrfvb 6483 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌)) | |
4 | 3 | ex 403 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) |
5 | 2, 4 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1658 ∈ wcel 2166 Ⅎwnfc 2957 ∀wral 3118 class class class wbr 4874 ↦ cmpt 4953 Fn wfn 6119 ‘cfv 6124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-iota 6087 df-fun 6126 df-fn 6127 df-fv 6132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |