Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelrelex Structured version   Visualization version   GIF version

Theorem bj-opelrelex 35242
Description: The coordinates of an ordered pair that belongs to a relation are sets. TODO: Slightly shorter than brrelex12 5630, which could be proved from it. (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-opelrelex ((Rel 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem bj-opelrelex
StepHypRef Expression
1 df-rel 5587 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 215 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3917 . 2 ((Rel 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
4 opelxp 5616 . 2 (⟨𝐴, 𝐵⟩ ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
53, 4sylib 217 1 ((Rel 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  wss 3883  cop 4564   × cxp 5578  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator