Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelrelex Structured version   Visualization version   GIF version

Theorem bj-opelrelex 37145
Description: The coordinates of an ordered pair that belongs to a relation are sets. TODO: Slightly shorter than brrelex12 5737, which could be proved from it. (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-opelrelex ((Rel 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem bj-opelrelex
StepHypRef Expression
1 df-rel 5692 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 216 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3983 . 2 ((Rel 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
4 opelxp 5721 . 2 (⟨𝐴, 𝐵⟩ ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
53, 4sylib 218 1 ((Rel 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3480  wss 3951  cop 4632   × cxp 5683  Rel wrel 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-opab 5206  df-xp 5691  df-rel 5692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator