![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelrelex | Structured version Visualization version GIF version |
Description: The coordinates of an ordered pair that belongs to a relation are sets. TODO: Slightly shorter than brrelex12 5752, which could be proved from it. (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-opelrelex | ⊢ ((Rel 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5707 | . . . 4 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 2 | sselda 4008 | . 2 ⊢ ((Rel 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → 〈𝐴, 𝐵〉 ∈ (V × V)) |
4 | opelxp 5736 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 3, 4 | sylib 218 | 1 ⊢ ((Rel 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 〈cop 4654 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |