![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelrelex | Structured version Visualization version GIF version |
Description: The coordinates of an ordered pair that belongs to a relation are sets. TODO: Slightly shorter than brrelex12 5718, which could be proved from it. (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-opelrelex | ⊢ ((Rel 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5673 | . . . 4 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 2 | sselda 3974 | . 2 ⊢ ((Rel 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → ⟨𝐴, 𝐵⟩ ∈ (V × V)) |
4 | opelxp 5702 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 3, 4 | sylib 217 | 1 ⊢ ((Rel 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 ⟨cop 4626 × cxp 5664 Rel wrel 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-opab 5201 df-xp 5672 df-rel 5673 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |