Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelopabbv Structured version   Visualization version   GIF version

Theorem opelopabbv 36531
Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.)
Hypotheses
Ref Expression
opelopabbv.def (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
opelopabbv.is ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
opelopabbv (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem opelopabbv
StepHypRef Expression
1 opelopabbv.def . . 3 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
21eleq2d 2813 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
3 ax-5 1905 . . 3 (𝜑 → ∀𝑥𝜑)
4 ax-5 1905 . . 3 (𝜑 → ∀𝑦𝜑)
5 nfvd 1910 . . 3 (𝜑 → Ⅎ𝑥𝜒)
6 nfvd 1910 . . 3 (𝜑 → Ⅎ𝑦𝜒)
7 opelopabbv.is . . 3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
83, 4, 5, 6, 7opelopabb 36530 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)))
92, 8bitrd 279 1 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  cop 4629  {copab 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-opab 5204
This theorem is referenced by:  bj-opelidb  36540
  Copyright terms: Public domain W3C validator