Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopabbv | Structured version Visualization version GIF version |
Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.) |
Ref | Expression |
---|---|
opelopabbv.def | ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
opelopabbv.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabbv | ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabbv.def | . . 3 ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
2 | 1 | eleq2d 2825 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) |
3 | ax-5 1918 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
4 | ax-5 1918 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
5 | nfvd 1923 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
6 | nfvd 1923 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
7 | opelopabbv.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
8 | 3, 4, 5, 6, 7 | opelopabb 35216 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
9 | 2, 8 | bitrd 282 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 Vcvv 3423 〈cop 4564 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 |
This theorem is referenced by: bj-opelidb 35226 |
Copyright terms: Public domain | W3C validator |