![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopabbv | Structured version Visualization version GIF version |
Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.) |
Ref | Expression |
---|---|
opelopabbv.def | ⊢ (𝜑 → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓}) |
opelopabbv.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabbv | ⊢ (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabbv.def | . . 3 ⊢ (𝜑 → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓}) | |
2 | 1 | eleq2d 2813 | . 2 ⊢ (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓})) |
3 | ax-5 1905 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
4 | ax-5 1905 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
5 | nfvd 1910 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
6 | nfvd 1910 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
7 | opelopabbv.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
8 | 3, 4, 5, 6, 7 | opelopabb 36530 | . 2 ⊢ (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
9 | 2, 8 | bitrd 279 | 1 ⊢ (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 {copab 5203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-opab 5204 |
This theorem is referenced by: bj-opelidb 36540 |
Copyright terms: Public domain | W3C validator |