Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelopabbv Structured version   Visualization version   GIF version

Theorem opelopabbv 35217
Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.)
Hypotheses
Ref Expression
opelopabbv.def (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
opelopabbv.is ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
opelopabbv (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem opelopabbv
StepHypRef Expression
1 opelopabbv.def . . 3 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
21eleq2d 2825 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
3 ax-5 1918 . . 3 (𝜑 → ∀𝑥𝜑)
4 ax-5 1918 . . 3 (𝜑 → ∀𝑦𝜑)
5 nfvd 1923 . . 3 (𝜑 → Ⅎ𝑥𝜒)
6 nfvd 1923 . . 3 (𝜑 → Ⅎ𝑦𝜒)
7 opelopabbv.is . . 3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
83, 4, 5, 6, 7opelopabb 35216 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)))
92, 8bitrd 282 1 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  Vcvv 3423  cop 4564  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133
This theorem is referenced by:  bj-opelidb  35226
  Copyright terms: Public domain W3C validator