![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelresdm | Structured version Visualization version GIF version |
Description: If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres 5985. (Contributed by BJ, 25-Dec-2023.) |
Ref | Expression |
---|---|
bj-opelresdm | ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3960 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑅 ∩ (𝑋 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × V))) | |
2 | opelxp1 5714 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × V) → 𝐴 ∈ 𝑋) | |
3 | 1, 2 | simplbiim 504 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑅 ∩ (𝑋 × V)) → 𝐴 ∈ 𝑋) |
4 | df-res 5684 | . 2 ⊢ (𝑅 ↾ 𝑋) = (𝑅 ∩ (𝑋 × V)) | |
5 | 3, 4 | eleq2s 2846 | 1 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3469 ∩ cin 3943 ⟨cop 4630 × cxp 5670 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5205 df-xp 5678 df-res 5684 |
This theorem is referenced by: bj-brresdm 36561 |
Copyright terms: Public domain | W3C validator |