Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelresdm Structured version   Visualization version   GIF version

Theorem bj-opelresdm 35316
Description: If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres 5897. (Contributed by BJ, 25-Dec-2023.)
Assertion
Ref Expression
bj-opelresdm (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋) → 𝐴𝑋)

Proof of Theorem bj-opelresdm
StepHypRef Expression
1 elin 3903 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑅 ∩ (𝑋 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × V)))
2 opelxp1 5630 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × V) → 𝐴𝑋)
31, 2simplbiim 505 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅 ∩ (𝑋 × V)) → 𝐴𝑋)
4 df-res 5601 . 2 (𝑅𝑋) = (𝑅 ∩ (𝑋 × V))
53, 4eleq2s 2857 1 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  cin 3886  cop 4567   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-xp 5595  df-res 5601
This theorem is referenced by:  bj-brresdm  35317
  Copyright terms: Public domain W3C validator