Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelresdm | Structured version Visualization version GIF version |
Description: If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres 5831. (Contributed by BJ, 25-Dec-2023.) |
Ref | Expression |
---|---|
bj-opelresdm | ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3859 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ (𝑋 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × V))) | |
2 | opelxp1 5566 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × V) → 𝐴 ∈ 𝑋) | |
3 | 1, 2 | simplbiim 508 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ (𝑋 × V)) → 𝐴 ∈ 𝑋) |
4 | df-res 5537 | . 2 ⊢ (𝑅 ↾ 𝑋) = (𝑅 ∩ (𝑋 × V)) | |
5 | 3, 4 | eleq2s 2851 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 Vcvv 3398 ∩ cin 3842 〈cop 4522 × cxp 5523 ↾ cres 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-opab 5093 df-xp 5531 df-res 5537 |
This theorem is referenced by: bj-brresdm 34960 |
Copyright terms: Public domain | W3C validator |