Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelresdm | Structured version Visualization version GIF version |
Description: If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres 5886. (Contributed by BJ, 25-Dec-2023.) |
Ref | Expression |
---|---|
bj-opelresdm | ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ (𝑋 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × V))) | |
2 | opelxp1 5621 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × V) → 𝐴 ∈ 𝑋) | |
3 | 1, 2 | simplbiim 504 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ (𝑋 × V)) → 𝐴 ∈ 𝑋) |
4 | df-res 5592 | . 2 ⊢ (𝑅 ↾ 𝑋) = (𝑅 ∩ (𝑋 × V)) | |
5 | 3, 4 | eleq2s 2857 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 〈cop 4564 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: bj-brresdm 35244 |
Copyright terms: Public domain | W3C validator |