Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelresdm Structured version   Visualization version   GIF version

Theorem bj-opelresdm 35243
Description: If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres 5886. (Contributed by BJ, 25-Dec-2023.)
Assertion
Ref Expression
bj-opelresdm (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋) → 𝐴𝑋)

Proof of Theorem bj-opelresdm
StepHypRef Expression
1 elin 3899 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑅 ∩ (𝑋 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × V)))
2 opelxp1 5621 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × V) → 𝐴𝑋)
31, 2simplbiim 504 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅 ∩ (𝑋 × V)) → 𝐴𝑋)
4 df-res 5592 . 2 (𝑅𝑋) = (𝑅 ∩ (𝑋 × V))
53, 4eleq2s 2857 1 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  cin 3882  cop 4564   × cxp 5578  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586  df-res 5592
This theorem is referenced by:  bj-brresdm  35244
  Copyright terms: Public domain W3C validator