| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelresdm | Structured version Visualization version GIF version | ||
| Description: If an ordered pair is in a restricted binary relation, then its first component is an element of the restricting class. See also opelres 5939. (Contributed by BJ, 25-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-opelresdm | ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3913 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ (𝑋 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × V))) | |
| 2 | opelxp1 5661 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × V) → 𝐴 ∈ 𝑋) | |
| 3 | 1, 2 | simplbiim 504 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ (𝑋 × V)) → 𝐴 ∈ 𝑋) |
| 4 | df-res 5631 | . 2 ⊢ (𝑅 ↾ 𝑋) = (𝑅 ∩ (𝑋 × V)) | |
| 5 | 3, 4 | eleq2s 2849 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 〈cop 4581 × cxp 5617 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-opab 5156 df-xp 5625 df-res 5631 |
| This theorem is referenced by: bj-brresdm 37197 |
| Copyright terms: Public domain | W3C validator |