Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-brresdm Structured version   Visualization version   GIF version

Theorem bj-brresdm 35317
Description: If two classes are related by a restricted binary relation, then the first class is an element of the restricting class. See also brres 5898 and brrelex1 5640.

Remark: there are many pairs like bj-opelresdm 35316 / bj-brresdm 35317, where one uses membership of ordered pairs and the other, related classes (for instance, bj-opelresdm 35316 / brrelex12 5639 or the opelopabg 5451 / brabg 5452 family). They are straightforwardly equivalent by df-br 5075. The latter is indeed a very direct definition, introducing a "shorthand", and barely necessary, were it not for the frequency of the expression 𝐴𝑅𝐵. Therefore, in the spirit of "definitions are here to be used", most theorems, apart from the most elementary ones, should only have the "br" version, not the "opel" one. (Contributed by BJ, 25-Dec-2023.)

Assertion
Ref Expression
bj-brresdm (𝐴(𝑅𝑋)𝐵𝐴𝑋)

Proof of Theorem bj-brresdm
StepHypRef Expression
1 df-br 5075 . 2 (𝐴(𝑅𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋))
2 bj-opelresdm 35316 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋) → 𝐴𝑋)
31, 2sylbi 216 1 (𝐴(𝑅𝑋)𝐵𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cop 4567   class class class wbr 5074  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-res 5601
This theorem is referenced by:  bj-idreseq  35333
  Copyright terms: Public domain W3C validator