Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-brresdm Structured version   Visualization version   GIF version

Theorem bj-brresdm 36658
Description: If two classes are related by a restricted binary relation, then the first class is an element of the restricting class. See also brres 5996 and brrelex1 5735.

Remark: there are many pairs like bj-opelresdm 36657 / bj-brresdm 36658, where one uses membership of ordered pairs and the other, related classes (for instance, bj-opelresdm 36657 / brrelex12 5734 or the opelopabg 5544 / brabg 5545 family). They are straightforwardly equivalent by df-br 5153. The latter is indeed a very direct definition, introducing a "shorthand", and barely necessary, were it not for the frequency of the expression 𝐴𝑅𝐵. Therefore, in the spirit of "definitions are here to be used", most theorems, apart from the most elementary ones, should only have the "br" version, not the "opel" one. (Contributed by BJ, 25-Dec-2023.)

Assertion
Ref Expression
bj-brresdm (𝐴(𝑅𝑋)𝐵𝐴𝑋)

Proof of Theorem bj-brresdm
StepHypRef Expression
1 df-br 5153 . 2 (𝐴(𝑅𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋))
2 bj-opelresdm 36657 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋) → 𝐴𝑋)
31, 2sylbi 216 1 (𝐴(𝑅𝑋)𝐵𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  cop 4638   class class class wbr 5152  cres 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-res 5694
This theorem is referenced by:  bj-idreseq  36674
  Copyright terms: Public domain W3C validator