| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-brresdm | Structured version Visualization version GIF version | ||
| Description: If two classes are
related by a restricted binary relation, then the first
class is an element of the restricting class. See also brres 5946 and
brrelex1 5684.
Remark: there are many pairs like bj-opelresdm 37127 / bj-brresdm 37128, where one uses membership of ordered pairs and the other, related classes (for instance, bj-opelresdm 37127 / brrelex12 5683 or the opelopabg 5493 / brabg 5494 family). They are straightforwardly equivalent by df-br 5103. The latter is indeed a very direct definition, introducing a "shorthand", and barely necessary, were it not for the frequency of the expression 𝐴𝑅𝐵. Therefore, in the spirit of "definitions are here to be used", most theorems, apart from the most elementary ones, should only have the "br" version, not the "opel" one. (Contributed by BJ, 25-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-brresdm | ⊢ (𝐴(𝑅 ↾ 𝑋)𝐵 → 𝐴 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5103 | . 2 ⊢ (𝐴(𝑅 ↾ 𝑋)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋)) | |
| 2 | bj-opelresdm 37127 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ↾ 𝑋) → 𝐴 ∈ 𝑋) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴(𝑅 ↾ 𝑋)𝐵 → 𝐴 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-res 5643 |
| This theorem is referenced by: bj-idreseq 37144 |
| Copyright terms: Public domain | W3C validator |