Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-brresdm Structured version   Visualization version   GIF version

Theorem bj-brresdm 37134
Description: If two classes are related by a restricted binary relation, then the first class is an element of the restricting class. See also brres 5957 and brrelex1 5691.

Remark: there are many pairs like bj-opelresdm 37133 / bj-brresdm 37134, where one uses membership of ordered pairs and the other, related classes (for instance, bj-opelresdm 37133 / brrelex12 5690 or the opelopabg 5498 / brabg 5499 family). They are straightforwardly equivalent by df-br 5108. The latter is indeed a very direct definition, introducing a "shorthand", and barely necessary, were it not for the frequency of the expression 𝐴𝑅𝐵. Therefore, in the spirit of "definitions are here to be used", most theorems, apart from the most elementary ones, should only have the "br" version, not the "opel" one. (Contributed by BJ, 25-Dec-2023.)

Assertion
Ref Expression
bj-brresdm (𝐴(𝑅𝑋)𝐵𝐴𝑋)

Proof of Theorem bj-brresdm
StepHypRef Expression
1 df-br 5108 . 2 (𝐴(𝑅𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋))
2 bj-opelresdm 37133 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑋) → 𝐴𝑋)
31, 2sylbi 217 1 (𝐴(𝑅𝑋)𝐵𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cop 4595   class class class wbr 5107  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650
This theorem is referenced by:  bj-idreseq  37150
  Copyright terms: Public domain W3C validator