Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr1un | Structured version Visualization version GIF version |
Description: The first projection preserves unions. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-pr1un | ⊢ pr1 (𝐴 ∪ 𝐵) = (pr1 𝐴 ∪ pr1 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-projun 34921 | . 2 ⊢ (∅ Proj (𝐴 ∪ 𝐵)) = ((∅ Proj 𝐴) ∪ (∅ Proj 𝐵)) | |
2 | df-bj-pr1 34928 | . 2 ⊢ pr1 (𝐴 ∪ 𝐵) = (∅ Proj (𝐴 ∪ 𝐵)) | |
3 | df-bj-pr1 34928 | . . 3 ⊢ pr1 𝐴 = (∅ Proj 𝐴) | |
4 | df-bj-pr1 34928 | . . 3 ⊢ pr1 𝐵 = (∅ Proj 𝐵) | |
5 | 3, 4 | uneq12i 4075 | . 2 ⊢ (pr1 𝐴 ∪ pr1 𝐵) = ((∅ Proj 𝐴) ∪ (∅ Proj 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2775 | 1 ⊢ pr1 (𝐴 ∪ 𝐵) = (pr1 𝐴 ∪ pr1 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∪ cun 3864 ∅c0 4237 Proj bj-cproj 34917 pr1 bj-cpr1 34927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-bj-proj 34918 df-bj-pr1 34928 |
This theorem is referenced by: bj-pr21val 34940 |
Copyright terms: Public domain | W3C validator |