Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr1un Structured version   Visualization version   GIF version

Theorem bj-pr1un 35193
Description: The first projection preserves unions. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-pr1un pr1 (𝐴𝐵) = (pr1 𝐴 ∪ pr1 𝐵)

Proof of Theorem bj-pr1un
StepHypRef Expression
1 bj-projun 35184 . 2 (∅ Proj (𝐴𝐵)) = ((∅ Proj 𝐴) ∪ (∅ Proj 𝐵))
2 df-bj-pr1 35191 . 2 pr1 (𝐴𝐵) = (∅ Proj (𝐴𝐵))
3 df-bj-pr1 35191 . . 3 pr1 𝐴 = (∅ Proj 𝐴)
4 df-bj-pr1 35191 . . 3 pr1 𝐵 = (∅ Proj 𝐵)
53, 4uneq12i 4095 . 2 (pr1 𝐴 ∪ pr1 𝐵) = ((∅ Proj 𝐴) ∪ (∅ Proj 𝐵))
61, 2, 53eqtr4i 2776 1 pr1 (𝐴𝐵) = (pr1 𝐴 ∪ pr1 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3885  c0 4256   Proj bj-cproj 35180  pr1 bj-cpr1 35190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-bj-proj 35181  df-bj-pr1 35191
This theorem is referenced by:  bj-pr21val  35203
  Copyright terms: Public domain W3C validator