Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr1un Structured version   Visualization version   GIF version

Theorem bj-pr1un 36969
Description: The first projection preserves unions. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-pr1un pr1 (𝐴𝐵) = (pr1 𝐴 ∪ pr1 𝐵)

Proof of Theorem bj-pr1un
StepHypRef Expression
1 bj-projun 36960 . 2 (∅ Proj (𝐴𝐵)) = ((∅ Proj 𝐴) ∪ (∅ Proj 𝐵))
2 df-bj-pr1 36967 . 2 pr1 (𝐴𝐵) = (∅ Proj (𝐴𝐵))
3 df-bj-pr1 36967 . . 3 pr1 𝐴 = (∅ Proj 𝐴)
4 df-bj-pr1 36967 . . 3 pr1 𝐵 = (∅ Proj 𝐵)
53, 4uneq12i 4189 . 2 (pr1 𝐴 ∪ pr1 𝐵) = ((∅ Proj 𝐴) ∪ (∅ Proj 𝐵))
61, 2, 53eqtr4i 2778 1 pr1 (𝐴𝐵) = (pr1 𝐴 ∪ pr1 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3974  c0 4352   Proj bj-cproj 36956  pr1 bj-cpr1 36966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-bj-proj 36957  df-bj-pr1 36967
This theorem is referenced by:  bj-pr21val  36979
  Copyright terms: Public domain W3C validator