Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr1un Structured version   Visualization version   GIF version

Theorem bj-pr1un 36964
Description: The first projection preserves unions. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-pr1un pr1 (𝐴𝐵) = (pr1 𝐴 ∪ pr1 𝐵)

Proof of Theorem bj-pr1un
StepHypRef Expression
1 bj-projun 36955 . 2 (∅ Proj (𝐴𝐵)) = ((∅ Proj 𝐴) ∪ (∅ Proj 𝐵))
2 df-bj-pr1 36962 . 2 pr1 (𝐴𝐵) = (∅ Proj (𝐴𝐵))
3 df-bj-pr1 36962 . . 3 pr1 𝐴 = (∅ Proj 𝐴)
4 df-bj-pr1 36962 . . 3 pr1 𝐵 = (∅ Proj 𝐵)
53, 4uneq12i 4125 . 2 (pr1 𝐴 ∪ pr1 𝐵) = ((∅ Proj 𝐴) ∪ (∅ Proj 𝐵))
61, 2, 53eqtr4i 2762 1 pr1 (𝐴𝐵) = (pr1 𝐴 ∪ pr1 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3909  c0 4292   Proj bj-cproj 36951  pr1 bj-cpr1 36961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-bj-proj 36952  df-bj-pr1 36962
This theorem is referenced by:  bj-pr21val  36974
  Copyright terms: Public domain W3C validator