Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr1val Structured version   Visualization version   GIF version

Theorem bj-pr1val 35121
Description: Value of the first projection. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-pr1val pr1 ({𝐴} × tag 𝐵) = if(𝐴 = ∅, 𝐵, ∅)

Proof of Theorem bj-pr1val
StepHypRef Expression
1 df-bj-pr1 35118 . 2 pr1 ({𝐴} × tag 𝐵) = (∅ Proj ({𝐴} × tag 𝐵))
2 0ex 5226 . . 3 ∅ ∈ V
3 bj-projval 35113 . . 3 (∅ ∈ V → (∅ Proj ({𝐴} × tag 𝐵)) = if(𝐴 = ∅, 𝐵, ∅))
42, 3ax-mp 5 . 2 (∅ Proj ({𝐴} × tag 𝐵)) = if(𝐴 = ∅, 𝐵, ∅)
51, 4eqtri 2766 1 pr1 ({𝐴} × tag 𝐵) = if(𝐴 = ∅, 𝐵, ∅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  ifcif 4456  {csn 4558   × cxp 5578  tag bj-ctag 35091   Proj bj-cproj 35107  pr1 bj-cpr1 35117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-bj-sngl 35083  df-bj-tag 35092  df-bj-proj 35108  df-bj-pr1 35118
This theorem is referenced by:  bj-pr11val  35122  bj-pr21val  35130
  Copyright terms: Public domain W3C validator