Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr1val Structured version   Visualization version   GIF version

Theorem bj-pr1val 36992
Description: Value of the first projection. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-pr1val pr1 ({𝐴} × tag 𝐵) = if(𝐴 = ∅, 𝐵, ∅)

Proof of Theorem bj-pr1val
StepHypRef Expression
1 df-bj-pr1 36989 . 2 pr1 ({𝐴} × tag 𝐵) = (∅ Proj ({𝐴} × tag 𝐵))
2 0ex 5262 . . 3 ∅ ∈ V
3 bj-projval 36984 . . 3 (∅ ∈ V → (∅ Proj ({𝐴} × tag 𝐵)) = if(𝐴 = ∅, 𝐵, ∅))
42, 3ax-mp 5 . 2 (∅ Proj ({𝐴} × tag 𝐵)) = if(𝐴 = ∅, 𝐵, ∅)
51, 4eqtri 2752 1 pr1 ({𝐴} × tag 𝐵) = if(𝐴 = ∅, 𝐵, ∅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  ifcif 4488  {csn 4589   × cxp 5636  tag bj-ctag 36962   Proj bj-cproj 36978  pr1 bj-cpr1 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-bj-sngl 36954  df-bj-tag 36963  df-bj-proj 36979  df-bj-pr1 36989
This theorem is referenced by:  bj-pr11val  36993  bj-pr21val  37001
  Copyright terms: Public domain W3C validator