| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) Prove unexg 7683 first and then unex 7684 and unexb 7687 from it. (Revised by BJ, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4877 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | prex 5379 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| 4 | 3 | uniexd 7682 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} ∈ V) |
| 5 | 1, 4 | eqeltrrd 2829 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 {cpr 4581 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-uni 4862 |
| This theorem is referenced by: unex 7684 unexb 7687 xpexg 7690 unexd 7694 difex2 7700 difsnexi 7701 eldifpw 7708 pwuncl 7710 ordunpr 7765 soex 7861 fnse 8073 suppun 8124 tposexg 8180 frrlem13 8238 tfrlem12 8318 tfrlem16 8322 elmapresaun 8814 ralxpmap 8830 undifixp 8868 undom 8989 domunsncan 9001 domssex2 9061 domssex 9062 mapunen 9070 sbthfilem 9122 fsuppunbi 9298 elfiun 9339 brwdom2 9484 unwdomg 9495 djuex 9823 djuexALT 9837 alephprc 10012 djudoml 10098 infunabs 10119 fin23lem11 10230 axdc2lem 10361 ttukeylem1 10422 fpwwe2lem12 10555 wunex2 10651 wuncval2 10660 hashunx 14311 hashf1lem1 14380 trclexlem 14919 trclun 14939 relexp0g 14947 relexpsucnnr 14950 isstruct2 17078 setsvalg 17095 setsid 17136 yonffth 18208 pwmndgplus 18827 dmdprdsplit2 19945 basdif0 22856 fiuncmp 23307 refun0 23418 ptbasfi 23484 dfac14lem 23520 ptrescn 23542 xkoptsub 23557 filconn 23786 isufil2 23811 ufileu 23822 filufint 23823 fmfnfmlem4 23860 fmfnfm 23861 fclsfnflim 23930 flimfnfcls 23931 ptcmplem1 23955 elply2 26117 plyss 26120 noeta2 27713 etasslt2 27743 scutbdaybnd2lim 27746 wlkp1lem4 29638 resf1o 32686 tocycfv 33064 tocycf 33072 locfinref 33807 esumsplit 34019 esumpad2 34022 sseqval 34355 bnj1149 34758 tz9.1regs 35066 satfvsuc 35333 satf0suclem 35347 sat1el2xp 35351 fmlasuc0 35356 altxpexg 35951 hfun 36151 refssfne 36331 topjoin 36338 weiunse 36441 bj-2uplex 36995 ptrest 37598 poimirlem3 37602 paddval 39777 evlselvlem 42559 elrfi 42667 rtrclexlem 43589 clcnvlem 43596 cnvrcl0 43598 dfrtrcl5 43602 iunrelexp0 43675 relexpxpmin 43690 brtrclfv2 43700 sge0resplit 46388 sge0split 46391 setsv 47363 setrec1lem4 49676 |
| Copyright terms: Public domain | W3C validator |