Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version |
Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | elex 3440 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
3 | unexb 7576 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | |
4 | 3 | biimpi 215 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
5 | 1, 2, 4 | syl2an 595 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 |
This theorem is referenced by: xpexg 7578 unexd 7582 difex2 7588 difsnexi 7589 eldifpw 7596 pwuncl 7598 ordunpr 7648 soex 7742 fnse 7945 suppun 7971 tposexg 8027 frrlem13 8085 wfrlem15OLD 8125 tfrlem12 8191 tfrlem16 8195 elmapresaun 8626 ralxpmap 8642 undifixp 8680 undom 8800 domunsncan 8812 domssex2 8873 domssex 8874 mapunen 8882 sbthfilem 8941 fsuppunbi 9079 elfiun 9119 brwdom2 9262 unwdomg 9273 djuex 9597 djuexALT 9611 alephprc 9786 djudoml 9871 infunabs 9894 fin23lem11 10004 axdc2lem 10135 ttukeylem1 10196 fpwwe2lem12 10329 wunex2 10425 wuncval2 10434 hashunx 14029 hashf1lem1 14096 hashf1lem1OLD 14097 trclexlem 14633 trclun 14653 relexp0g 14661 relexpsucnnr 14664 isstruct2 16778 setsvalg 16795 setsid 16837 yonffth 17918 pwmndgplus 18489 dmdprdsplit2 19564 basdif0 22011 fiuncmp 22463 refun0 22574 ptbasfi 22640 dfac14lem 22676 ptrescn 22698 xkoptsub 22713 filconn 22942 isufil2 22967 ufileu 22978 filufint 22979 fmfnfmlem4 23016 fmfnfm 23017 fclsfnflim 23086 flimfnfcls 23087 ptcmplem1 23111 elply2 25262 plyss 25265 wlkp1lem4 27946 resf1o 30967 tocycfv 31278 tocycf 31286 locfinref 31693 esumsplit 31921 esumpad2 31924 sseqval 32255 bnj1149 32672 satfvsuc 33223 satf0suclem 33237 sat1el2xp 33241 fmlasuc0 33246 noeta2 33906 etasslt2 33935 scutbdaybnd2lim 33938 altxpexg 34207 hfun 34407 refssfne 34474 topjoin 34481 bj-2uplex 35139 ptrest 35703 poimirlem3 35707 paddval 37739 elrfi 40432 rclexi 41112 rtrclexlem 41113 trclubgNEW 41115 clcnvlem 41120 cnvrcl0 41122 dfrtrcl5 41126 iunrelexp0 41199 relexpmulg 41207 relexp01min 41210 relexpxpmin 41214 brtrclfv2 41224 sge0resplit 43834 sge0split 43837 setsv 44718 setrec1lem4 46282 |
Copyright terms: Public domain | W3C validator |