| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) Prove unexg 7682 first and then unex 7683 and unexb 7686 from it. (Revised by BJ, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4874 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | prex 5377 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| 4 | 3 | uniexd 7681 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} ∈ V) |
| 5 | 1, 4 | eqeltrrd 2834 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 {cpr 4577 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 df-uni 4859 |
| This theorem is referenced by: unex 7683 unexb 7686 xpexg 7689 unexd 7693 difex2 7699 difsnexi 7700 eldifpw 7707 pwuncl 7709 ordunpr 7762 soex 7857 fnse 8069 suppun 8120 tposexg 8176 frrlem13 8234 tfrlem12 8314 tfrlem16 8318 elmapresaun 8810 ralxpmap 8826 undifixp 8864 undom 8985 domunsncan 8997 domssex2 9057 domssex 9058 mapunen 9066 sbthfilem 9114 fsuppunbi 9280 elfiun 9321 brwdom2 9466 unwdomg 9477 djuex 9808 djuexALT 9822 alephprc 9997 djudoml 10083 infunabs 10104 fin23lem11 10215 axdc2lem 10346 ttukeylem1 10407 fpwwe2lem12 10540 wunex2 10636 wuncval2 10645 hashunx 14295 hashf1lem1 14364 trclexlem 14903 trclun 14923 relexp0g 14931 relexpsucnnr 14934 isstruct2 17062 setsvalg 17079 setsid 17120 yonffth 18192 pwmndgplus 18845 dmdprdsplit2 19962 basdif0 22869 fiuncmp 23320 refun0 23431 ptbasfi 23497 dfac14lem 23533 ptrescn 23555 xkoptsub 23570 filconn 23799 isufil2 23824 ufileu 23835 filufint 23836 fmfnfmlem4 23873 fmfnfm 23874 fclsfnflim 23943 flimfnfcls 23944 ptcmplem1 23968 elply2 26129 plyss 26132 noeta2 27725 etasslt2 27756 scutbdaybnd2lim 27759 wlkp1lem4 29655 resf1o 32717 tocycfv 33085 tocycf 33093 locfinref 33875 esumsplit 34087 esumpad2 34090 sseqval 34422 bnj1149 34825 tz9.1regs 35151 satfvsuc 35426 satf0suclem 35440 sat1el2xp 35444 fmlasuc0 35449 altxpexg 36043 hfun 36243 refssfne 36423 topjoin 36430 weiunse 36533 bj-2uplex 37087 ptrest 37679 poimirlem3 37683 paddval 39917 evlselvlem 42704 elrfi 42811 rtrclexlem 43733 clcnvlem 43740 cnvrcl0 43742 dfrtrcl5 43746 iunrelexp0 43819 relexpxpmin 43834 brtrclfv2 43844 sge0resplit 46528 sge0split 46531 setsv 47502 setrec1lem4 49815 |
| Copyright terms: Public domain | W3C validator |