| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) Prove unexg 7722 first and then unex 7723 and unexb 7726 from it. (Revised by BJ, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4890 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | prex 5395 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| 4 | 3 | uniexd 7721 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} ∈ V) |
| 5 | 1, 4 | eqeltrrd 2830 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {cpr 4594 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 |
| This theorem is referenced by: unex 7723 unexb 7726 xpexg 7729 unexd 7733 difex2 7739 difsnexi 7740 eldifpw 7747 pwuncl 7749 ordunpr 7804 soex 7900 fnse 8115 suppun 8166 tposexg 8222 frrlem13 8280 tfrlem12 8360 tfrlem16 8364 elmapresaun 8856 ralxpmap 8872 undifixp 8910 undom 9033 undomOLD 9034 domunsncan 9046 domssex2 9107 domssex 9108 mapunen 9116 sbthfilem 9168 fsuppunbi 9347 elfiun 9388 brwdom2 9533 unwdomg 9544 djuex 9868 djuexALT 9882 alephprc 10059 djudoml 10145 infunabs 10166 fin23lem11 10277 axdc2lem 10408 ttukeylem1 10469 fpwwe2lem12 10602 wunex2 10698 wuncval2 10707 hashunx 14358 hashf1lem1 14427 trclexlem 14967 trclun 14987 relexp0g 14995 relexpsucnnr 14998 isstruct2 17126 setsvalg 17143 setsid 17184 yonffth 18252 pwmndgplus 18869 dmdprdsplit2 19985 basdif0 22847 fiuncmp 23298 refun0 23409 ptbasfi 23475 dfac14lem 23511 ptrescn 23533 xkoptsub 23548 filconn 23777 isufil2 23802 ufileu 23813 filufint 23814 fmfnfmlem4 23851 fmfnfm 23852 fclsfnflim 23921 flimfnfcls 23922 ptcmplem1 23946 elply2 26108 plyss 26111 noeta2 27703 etasslt2 27733 scutbdaybnd2lim 27736 wlkp1lem4 29611 resf1o 32660 tocycfv 33073 tocycf 33081 locfinref 33838 esumsplit 34050 esumpad2 34053 sseqval 34386 bnj1149 34789 satfvsuc 35355 satf0suclem 35369 sat1el2xp 35373 fmlasuc0 35378 altxpexg 35973 hfun 36173 refssfne 36353 topjoin 36360 weiunse 36463 bj-2uplex 37017 ptrest 37620 poimirlem3 37624 paddval 39799 evlselvlem 42581 elrfi 42689 rtrclexlem 43612 clcnvlem 43619 cnvrcl0 43621 dfrtrcl5 43625 iunrelexp0 43698 relexpxpmin 43713 brtrclfv2 43723 sge0resplit 46411 sge0split 46414 setsv 47383 setrec1lem4 49683 |
| Copyright terms: Public domain | W3C validator |