Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version |
Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3447 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | elex 3447 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
3 | unexb 7588 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | |
4 | 3 | biimpi 215 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
5 | 1, 2, 4 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3429 ∪ cun 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: xpexg 7590 unexd 7594 difex2 7600 difsnexi 7601 eldifpw 7608 pwuncl 7610 ordunpr 7663 soex 7758 fnse 7961 suppun 7987 tposexg 8043 frrlem13 8101 wfrlem15OLD 8141 tfrlem12 8207 tfrlem16 8211 elmapresaun 8655 ralxpmap 8671 undifixp 8709 undom 8833 undomOLD 8834 domunsncan 8846 domssex2 8911 domssex 8912 mapunen 8920 sbthfilem 8971 fsuppunbi 9136 elfiun 9176 brwdom2 9319 unwdomg 9330 djuex 9676 djuexALT 9690 alephprc 9865 djudoml 9950 infunabs 9973 fin23lem11 10083 axdc2lem 10214 ttukeylem1 10275 fpwwe2lem12 10408 wunex2 10504 wuncval2 10513 hashunx 14111 hashf1lem1 14178 hashf1lem1OLD 14179 trclexlem 14715 trclun 14735 relexp0g 14743 relexpsucnnr 14746 isstruct2 16860 setsvalg 16877 setsid 16919 yonffth 18012 pwmndgplus 18584 dmdprdsplit2 19659 basdif0 22113 fiuncmp 22565 refun0 22676 ptbasfi 22742 dfac14lem 22778 ptrescn 22800 xkoptsub 22815 filconn 23044 isufil2 23069 ufileu 23080 filufint 23081 fmfnfmlem4 23118 fmfnfm 23119 fclsfnflim 23188 flimfnfcls 23189 ptcmplem1 23213 elply2 25367 plyss 25370 wlkp1lem4 28053 resf1o 31073 tocycfv 31384 tocycf 31392 locfinref 31799 esumsplit 32029 esumpad2 32032 sseqval 32363 bnj1149 32780 satfvsuc 33331 satf0suclem 33345 sat1el2xp 33349 fmlasuc0 33354 noeta2 33987 etasslt2 34016 scutbdaybnd2lim 34019 altxpexg 34288 hfun 34488 refssfne 34555 topjoin 34562 bj-2uplex 35220 ptrest 35784 poimirlem3 35788 paddval 37820 elrfi 40524 rclexi 41204 rtrclexlem 41205 trclubgNEW 41207 clcnvlem 41212 cnvrcl0 41214 dfrtrcl5 41218 iunrelexp0 41291 relexpmulg 41299 relexp01min 41302 relexpxpmin 41306 brtrclfv2 41316 sge0resplit 43925 sge0split 43928 setsv 44808 setrec1lem4 46374 |
Copyright terms: Public domain | W3C validator |