| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) Prove unexg 7676 first and then unex 7677 and unexb 7680 from it. (Revised by BJ, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4875 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | prex 5375 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| 4 | 3 | uniexd 7675 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} ∈ V) |
| 5 | 1, 4 | eqeltrrd 2832 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 {cpr 4578 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-uni 4860 |
| This theorem is referenced by: unex 7677 unexb 7680 xpexg 7683 unexd 7687 difex2 7693 difsnexi 7694 eldifpw 7701 pwuncl 7703 ordunpr 7756 soex 7851 fnse 8063 suppun 8114 tposexg 8170 frrlem13 8228 tfrlem12 8308 tfrlem16 8312 elmapresaun 8804 ralxpmap 8820 undifixp 8858 undom 8978 domunsncan 8990 domssex2 9050 domssex 9051 mapunen 9059 sbthfilem 9107 fsuppunbi 9273 elfiun 9314 brwdom2 9459 unwdomg 9470 djuex 9798 djuexALT 9812 alephprc 9987 djudoml 10073 infunabs 10094 fin23lem11 10205 axdc2lem 10336 ttukeylem1 10397 fpwwe2lem12 10530 wunex2 10626 wuncval2 10635 hashunx 14290 hashf1lem1 14359 trclexlem 14898 trclun 14918 relexp0g 14926 relexpsucnnr 14929 isstruct2 17057 setsvalg 17074 setsid 17115 yonffth 18187 pwmndgplus 18840 dmdprdsplit2 19958 basdif0 22866 fiuncmp 23317 refun0 23428 ptbasfi 23494 dfac14lem 23530 ptrescn 23552 xkoptsub 23567 filconn 23796 isufil2 23821 ufileu 23832 filufint 23833 fmfnfmlem4 23870 fmfnfm 23871 fclsfnflim 23940 flimfnfcls 23941 ptcmplem1 23965 elply2 26126 plyss 26129 noeta2 27722 etasslt2 27753 scutbdaybnd2lim 27756 wlkp1lem4 29651 resf1o 32708 tocycfv 33073 tocycf 33081 locfinref 33849 esumsplit 34061 esumpad2 34064 sseqval 34396 bnj1149 34799 tz9.1regs 35118 satfvsuc 35393 satf0suclem 35407 sat1el2xp 35411 fmlasuc0 35416 altxpexg 36011 hfun 36211 refssfne 36391 topjoin 36398 weiunse 36501 bj-2uplex 37055 ptrest 37658 poimirlem3 37662 paddval 39836 evlselvlem 42618 elrfi 42726 rtrclexlem 43648 clcnvlem 43655 cnvrcl0 43657 dfrtrcl5 43661 iunrelexp0 43734 relexpxpmin 43749 brtrclfv2 43759 sge0resplit 46443 sge0split 46446 setsv 47408 setrec1lem4 49721 |
| Copyright terms: Public domain | W3C validator |