![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version |
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) Prove unexg 7778 first and then unex 7779 and unexb 7782 from it. (Revised by BJ, 21-Jul-2025.) |
Ref | Expression |
---|---|
unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniprg 4947 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
2 | prex 5452 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
4 | 3 | uniexd 7777 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} ∈ V) |
5 | 1, 4 | eqeltrrd 2845 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {cpr 4650 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: unex 7779 unexb 7782 xpexg 7785 unexd 7789 difex2 7795 difsnexi 7796 eldifpw 7803 pwuncl 7805 ordunpr 7862 soex 7961 fnse 8174 suppun 8225 tposexg 8281 frrlem13 8339 wfrlem15OLD 8379 tfrlem12 8445 tfrlem16 8449 elmapresaun 8938 ralxpmap 8954 undifixp 8992 undom 9125 undomOLD 9126 domunsncan 9138 domssex2 9203 domssex 9204 mapunen 9212 sbthfilem 9264 fsuppunbi 9458 elfiun 9499 brwdom2 9642 unwdomg 9653 djuex 9977 djuexALT 9991 alephprc 10168 djudoml 10254 infunabs 10275 fin23lem11 10386 axdc2lem 10517 ttukeylem1 10578 fpwwe2lem12 10711 wunex2 10807 wuncval2 10816 hashunx 14435 hashf1lem1 14504 trclexlem 15043 trclun 15063 relexp0g 15071 relexpsucnnr 15074 isstruct2 17196 setsvalg 17213 setsid 17255 yonffth 18354 pwmndgplus 18970 dmdprdsplit2 20090 basdif0 22981 fiuncmp 23433 refun0 23544 ptbasfi 23610 dfac14lem 23646 ptrescn 23668 xkoptsub 23683 filconn 23912 isufil2 23937 ufileu 23948 filufint 23949 fmfnfmlem4 23986 fmfnfm 23987 fclsfnflim 24056 flimfnfcls 24057 ptcmplem1 24081 elply2 26255 plyss 26258 noeta2 27847 etasslt2 27877 scutbdaybnd2lim 27880 wlkp1lem4 29712 resf1o 32744 tocycfv 33102 tocycf 33110 locfinref 33787 esumsplit 34017 esumpad2 34020 sseqval 34353 bnj1149 34768 satfvsuc 35329 satf0suclem 35343 sat1el2xp 35347 fmlasuc0 35352 altxpexg 35942 hfun 36142 refssfne 36324 topjoin 36331 weiunse 36434 bj-2uplex 36988 ptrest 37579 poimirlem3 37583 paddval 39755 evlselvlem 42541 elrfi 42650 rtrclexlem 43578 clcnvlem 43585 cnvrcl0 43587 dfrtrcl5 43591 iunrelexp0 43664 relexpxpmin 43679 brtrclfv2 43689 sge0resplit 46327 sge0split 46330 setsv 47252 setrec1lem4 48782 |
Copyright terms: Public domain | W3C validator |