| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) Prove unexg 7719 first and then unex 7720 and unexb 7723 from it. (Revised by BJ, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4887 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | prex 5392 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| 4 | 3 | uniexd 7718 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} ∈ V) |
| 5 | 1, 4 | eqeltrrd 2829 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 {cpr 4591 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 |
| This theorem is referenced by: unex 7720 unexb 7723 xpexg 7726 unexd 7730 difex2 7736 difsnexi 7737 eldifpw 7744 pwuncl 7746 ordunpr 7801 soex 7897 fnse 8112 suppun 8163 tposexg 8219 frrlem13 8277 tfrlem12 8357 tfrlem16 8361 elmapresaun 8853 ralxpmap 8869 undifixp 8907 undom 9029 domunsncan 9041 domssex2 9101 domssex 9102 mapunen 9110 sbthfilem 9162 fsuppunbi 9340 elfiun 9381 brwdom2 9526 unwdomg 9537 djuex 9861 djuexALT 9875 alephprc 10052 djudoml 10138 infunabs 10159 fin23lem11 10270 axdc2lem 10401 ttukeylem1 10462 fpwwe2lem12 10595 wunex2 10691 wuncval2 10700 hashunx 14351 hashf1lem1 14420 trclexlem 14960 trclun 14980 relexp0g 14988 relexpsucnnr 14991 isstruct2 17119 setsvalg 17136 setsid 17177 yonffth 18245 pwmndgplus 18862 dmdprdsplit2 19978 basdif0 22840 fiuncmp 23291 refun0 23402 ptbasfi 23468 dfac14lem 23504 ptrescn 23526 xkoptsub 23541 filconn 23770 isufil2 23795 ufileu 23806 filufint 23807 fmfnfmlem4 23844 fmfnfm 23845 fclsfnflim 23914 flimfnfcls 23915 ptcmplem1 23939 elply2 26101 plyss 26104 noeta2 27696 etasslt2 27726 scutbdaybnd2lim 27729 wlkp1lem4 29604 resf1o 32653 tocycfv 33066 tocycf 33074 locfinref 33831 esumsplit 34043 esumpad2 34046 sseqval 34379 bnj1149 34782 satfvsuc 35348 satf0suclem 35362 sat1el2xp 35366 fmlasuc0 35371 altxpexg 35966 hfun 36166 refssfne 36346 topjoin 36353 weiunse 36456 bj-2uplex 37010 ptrest 37613 poimirlem3 37617 paddval 39792 evlselvlem 42574 elrfi 42682 rtrclexlem 43605 clcnvlem 43612 cnvrcl0 43614 dfrtrcl5 43618 iunrelexp0 43691 relexpxpmin 43706 brtrclfv2 43716 sge0resplit 46404 sge0split 46407 setsv 47379 setrec1lem4 49679 |
| Copyright terms: Public domain | W3C validator |