![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version |
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) Prove unexg 7761 first and then unex 7762 and unexb 7765 from it. (Revised by BJ, 21-Jul-2025.) |
Ref | Expression |
---|---|
unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniprg 4927 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
2 | prex 5442 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
4 | 3 | uniexd 7760 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} ∈ V) |
5 | 1, 4 | eqeltrrd 2839 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Vcvv 3477 ∪ cun 3960 {cpr 4632 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-sn 4631 df-pr 4633 df-uni 4912 |
This theorem is referenced by: unex 7762 unexb 7765 xpexg 7768 unexd 7772 difex2 7778 difsnexi 7779 eldifpw 7786 pwuncl 7788 ordunpr 7845 soex 7943 fnse 8156 suppun 8207 tposexg 8263 frrlem13 8321 wfrlem15OLD 8361 tfrlem12 8427 tfrlem16 8431 elmapresaun 8918 ralxpmap 8934 undifixp 8972 undom 9097 undomOLD 9098 domunsncan 9110 domssex2 9175 domssex 9176 mapunen 9184 sbthfilem 9235 fsuppunbi 9426 elfiun 9467 brwdom2 9610 unwdomg 9621 djuex 9945 djuexALT 9959 alephprc 10136 djudoml 10222 infunabs 10243 fin23lem11 10354 axdc2lem 10485 ttukeylem1 10546 fpwwe2lem12 10679 wunex2 10775 wuncval2 10784 hashunx 14421 hashf1lem1 14490 trclexlem 15029 trclun 15049 relexp0g 15057 relexpsucnnr 15060 isstruct2 17182 setsvalg 17199 setsid 17241 yonffth 18340 pwmndgplus 18960 dmdprdsplit2 20080 basdif0 22975 fiuncmp 23427 refun0 23538 ptbasfi 23604 dfac14lem 23640 ptrescn 23662 xkoptsub 23677 filconn 23906 isufil2 23931 ufileu 23942 filufint 23943 fmfnfmlem4 23980 fmfnfm 23981 fclsfnflim 24050 flimfnfcls 24051 ptcmplem1 24075 elply2 26249 plyss 26252 noeta2 27843 etasslt2 27873 scutbdaybnd2lim 27876 wlkp1lem4 29708 resf1o 32747 tocycfv 33111 tocycf 33119 locfinref 33801 esumsplit 34033 esumpad2 34036 sseqval 34369 bnj1149 34784 satfvsuc 35345 satf0suclem 35359 sat1el2xp 35363 fmlasuc0 35368 altxpexg 35959 hfun 36159 refssfne 36340 topjoin 36347 weiunse 36450 bj-2uplex 37004 ptrest 37605 poimirlem3 37609 paddval 39780 evlselvlem 42572 elrfi 42681 rtrclexlem 43605 clcnvlem 43612 cnvrcl0 43614 dfrtrcl5 43618 iunrelexp0 43691 relexpxpmin 43706 brtrclfv2 43716 sge0resplit 46361 sge0split 46364 setsv 47302 setrec1lem4 48920 |
Copyright terms: Public domain | W3C validator |