| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexg | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) Prove unexg 7737 first and then unex 7738 and unexb 7741 from it. (Revised by BJ, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4899 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | prex 5407 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| 4 | 3 | uniexd 7736 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} ∈ V) |
| 5 | 1, 4 | eqeltrrd 2835 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 {cpr 4603 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 |
| This theorem is referenced by: unex 7738 unexb 7741 xpexg 7744 unexd 7748 difex2 7754 difsnexi 7755 eldifpw 7762 pwuncl 7764 ordunpr 7820 soex 7917 fnse 8132 suppun 8183 tposexg 8239 frrlem13 8297 wfrlem15OLD 8337 tfrlem12 8403 tfrlem16 8407 elmapresaun 8894 ralxpmap 8910 undifixp 8948 undom 9073 undomOLD 9074 domunsncan 9086 domssex2 9151 domssex 9152 mapunen 9160 sbthfilem 9212 fsuppunbi 9401 elfiun 9442 brwdom2 9587 unwdomg 9598 djuex 9922 djuexALT 9936 alephprc 10113 djudoml 10199 infunabs 10220 fin23lem11 10331 axdc2lem 10462 ttukeylem1 10523 fpwwe2lem12 10656 wunex2 10752 wuncval2 10761 hashunx 14404 hashf1lem1 14473 trclexlem 15013 trclun 15033 relexp0g 15041 relexpsucnnr 15044 isstruct2 17168 setsvalg 17185 setsid 17226 yonffth 18296 pwmndgplus 18913 dmdprdsplit2 20029 basdif0 22891 fiuncmp 23342 refun0 23453 ptbasfi 23519 dfac14lem 23555 ptrescn 23577 xkoptsub 23592 filconn 23821 isufil2 23846 ufileu 23857 filufint 23858 fmfnfmlem4 23895 fmfnfm 23896 fclsfnflim 23965 flimfnfcls 23966 ptcmplem1 23990 elply2 26153 plyss 26156 noeta2 27748 etasslt2 27778 scutbdaybnd2lim 27781 wlkp1lem4 29656 resf1o 32707 tocycfv 33120 tocycf 33128 locfinref 33872 esumsplit 34084 esumpad2 34087 sseqval 34420 bnj1149 34823 satfvsuc 35383 satf0suclem 35397 sat1el2xp 35401 fmlasuc0 35406 altxpexg 35996 hfun 36196 refssfne 36376 topjoin 36383 weiunse 36486 bj-2uplex 37040 ptrest 37643 poimirlem3 37647 paddval 39817 evlselvlem 42609 elrfi 42717 rtrclexlem 43640 clcnvlem 43647 cnvrcl0 43649 dfrtrcl5 43653 iunrelexp0 43726 relexpxpmin 43741 brtrclfv2 43751 sge0resplit 46435 sge0split 46438 setsv 47392 setrec1lem4 49554 |
| Copyright terms: Public domain | W3C validator |