| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1413 | Structured version Visualization version GIF version | ||
| Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1413.1 | ⊢ 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) |
| Ref | Expression |
|---|---|
| bnj1413 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1148 34993 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V) | |
| 2 | bnj893 34925 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V) | |
| 3 | simp1 1136 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴) | |
| 4 | bnj1127 34988 | . . . . . . . 8 ⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑦 ∈ 𝐴) | |
| 5 | 4 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑦 ∈ 𝐴) |
| 6 | bnj893 34925 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴) → trCl(𝑦, 𝐴, 𝑅) ∈ V) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ∈ V) |
| 8 | 7 | 3expia 1121 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ∈ V)) |
| 9 | 8 | ralrimiv 3125 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) |
| 10 | iunexg 7945 | . . . 4 ⊢ (( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) → ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) | |
| 11 | 2, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) |
| 12 | 1, 11 | bnj1149 34789 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∈ V) |
| 13 | bnj1413.1 | . . 3 ⊢ 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) | |
| 14 | bnj906 34927 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | |
| 15 | iunss1 4973 | . . . 4 ⊢ ( pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) | |
| 16 | unss2 4153 | . . . 4 ⊢ (∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) | |
| 17 | 14, 15, 16 | 3syl 18 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) |
| 18 | 13, 17 | eqsstrid 3988 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐵 ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) |
| 19 | 12, 18 | ssexd 5282 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 ∪ ciun 4958 predc-bnj14 34685 FrSe w-bnj15 34689 trClc-bnj18 34691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-bnj17 34684 df-bnj14 34686 df-bnj13 34688 df-bnj15 34690 df-bnj18 34692 |
| This theorem is referenced by: bnj1408 35033 |
| Copyright terms: Public domain | W3C validator |