Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj62 Structured version   Visualization version   GIF version

Theorem bnj62 31388
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj62 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem bnj62
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3401 . . . 4 𝑦 ∈ V
2 fneq1 6224 . . . 4 (𝑥 = 𝑦 → (𝑥 Fn 𝐴𝑦 Fn 𝐴))
31, 2sbcie 3687 . . 3 ([𝑦 / 𝑥]𝑥 Fn 𝐴𝑦 Fn 𝐴)
43sbcbii 3703 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑦]𝑦 Fn 𝐴)
5 sbcco 3675 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑥]𝑥 Fn 𝐴)
6 vex 3401 . . 3 𝑧 ∈ V
7 fneq1 6224 . . 3 (𝑦 = 𝑧 → (𝑦 Fn 𝐴𝑧 Fn 𝐴))
86, 7sbcie 3687 . 2 ([𝑧 / 𝑦]𝑦 Fn 𝐴𝑧 Fn 𝐴)
94, 5, 83bitr3i 293 1 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 198  [wsbc 3652   Fn wfn 6130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4887  df-opab 4949  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-fun 6137  df-fn 6138
This theorem is referenced by:  bnj156  31396  bnj976  31447  bnj581  31577
  Copyright terms: Public domain W3C validator