![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj62 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj62 | ⊢ ([𝑧 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑧 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3388 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | fneq1 6190 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 Fn 𝐴 ↔ 𝑦 Fn 𝐴)) | |
3 | 1, 2 | sbcie 3668 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑦 Fn 𝐴) |
4 | 3 | sbcbii 3689 | . 2 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴 ↔ [𝑧 / 𝑦]𝑦 Fn 𝐴) |
5 | sbcco 3656 | . 2 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴 ↔ [𝑧 / 𝑥]𝑥 Fn 𝐴) | |
6 | vex 3388 | . . 3 ⊢ 𝑧 ∈ V | |
7 | fneq1 6190 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑦 Fn 𝐴 ↔ 𝑧 Fn 𝐴)) | |
8 | 6, 7 | sbcie 3668 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 Fn 𝐴 ↔ 𝑧 Fn 𝐴) |
9 | 4, 5, 8 | 3bitr3i 293 | 1 ⊢ ([𝑧 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑧 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 [wsbc 3633 Fn wfn 6096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-fun 6103 df-fn 6104 |
This theorem is referenced by: bnj156 31314 bnj976 31365 bnj581 31495 |
Copyright terms: Public domain | W3C validator |