Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj62 Structured version   Visualization version   GIF version

Theorem bnj62 34756
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj62 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem bnj62
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3468 . . . 4 𝑦 ∈ V
2 fneq1 6634 . . . 4 (𝑥 = 𝑦 → (𝑥 Fn 𝐴𝑦 Fn 𝐴))
31, 2sbcie 3812 . . 3 ([𝑦 / 𝑥]𝑥 Fn 𝐴𝑦 Fn 𝐴)
43sbcbii 3827 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑦]𝑦 Fn 𝐴)
5 sbccow 3793 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑥]𝑥 Fn 𝐴)
6 vex 3468 . . 3 𝑧 ∈ V
7 fneq1 6634 . . 3 (𝑦 = 𝑧 → (𝑦 Fn 𝐴𝑧 Fn 𝐴))
86, 7sbcie 3812 . 2 ([𝑧 / 𝑦]𝑦 Fn 𝐴𝑧 Fn 𝐴)
94, 5, 83bitr3i 301 1 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsbc 3770   Fn wfn 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-fun 6538  df-fn 6539
This theorem is referenced by:  bnj156  34764  bnj976  34813  bnj581  34944
  Copyright terms: Public domain W3C validator