Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj62 Structured version   Visualization version   GIF version

Theorem bnj62 31306
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj62 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem bnj62
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3388 . . . 4 𝑦 ∈ V
2 fneq1 6190 . . . 4 (𝑥 = 𝑦 → (𝑥 Fn 𝐴𝑦 Fn 𝐴))
31, 2sbcie 3668 . . 3 ([𝑦 / 𝑥]𝑥 Fn 𝐴𝑦 Fn 𝐴)
43sbcbii 3689 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑦]𝑦 Fn 𝐴)
5 sbcco 3656 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑥]𝑥 Fn 𝐴)
6 vex 3388 . . 3 𝑧 ∈ V
7 fneq1 6190 . . 3 (𝑦 = 𝑧 → (𝑦 Fn 𝐴𝑧 Fn 𝐴))
86, 7sbcie 3668 . 2 ([𝑧 / 𝑦]𝑦 Fn 𝐴𝑧 Fn 𝐴)
94, 5, 83bitr3i 293 1 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 198  [wsbc 3633   Fn wfn 6096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-br 4844  df-opab 4906  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-fun 6103  df-fn 6104
This theorem is referenced by:  bnj156  31314  bnj976  31365  bnj581  31495
  Copyright terms: Public domain W3C validator