Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj62 Structured version   Visualization version   GIF version

Theorem bnj62 34713
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj62 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem bnj62
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . 4 𝑦 ∈ V
2 fneq1 6660 . . . 4 (𝑥 = 𝑦 → (𝑥 Fn 𝐴𝑦 Fn 𝐴))
31, 2sbcie 3835 . . 3 ([𝑦 / 𝑥]𝑥 Fn 𝐴𝑦 Fn 𝐴)
43sbcbii 3852 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑦]𝑦 Fn 𝐴)
5 sbccow 3814 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑥]𝑥 Fn 𝐴)
6 vex 3482 . . 3 𝑧 ∈ V
7 fneq1 6660 . . 3 (𝑦 = 𝑧 → (𝑦 Fn 𝐴𝑧 Fn 𝐴))
86, 7sbcie 3835 . 2 ([𝑧 / 𝑦]𝑦 Fn 𝐴𝑧 Fn 𝐴)
94, 5, 83bitr3i 301 1 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsbc 3791   Fn wfn 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-fun 6565  df-fn 6566
This theorem is referenced by:  bnj156  34721  bnj976  34770  bnj581  34901
  Copyright terms: Public domain W3C validator