| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj62 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj62 | ⊢ ([𝑧 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑧 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . 4 ⊢ 𝑦 ∈ V | |
| 2 | fneq1 6577 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 Fn 𝐴 ↔ 𝑦 Fn 𝐴)) | |
| 3 | 1, 2 | sbcie 3786 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑦 Fn 𝐴) |
| 4 | 3 | sbcbii 3801 | . 2 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴 ↔ [𝑧 / 𝑦]𝑦 Fn 𝐴) |
| 5 | sbccow 3767 | . 2 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴 ↔ [𝑧 / 𝑥]𝑥 Fn 𝐴) | |
| 6 | vex 3442 | . . 3 ⊢ 𝑧 ∈ V | |
| 7 | fneq1 6577 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑦 Fn 𝐴 ↔ 𝑧 Fn 𝐴)) | |
| 8 | 6, 7 | sbcie 3786 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 Fn 𝐴 ↔ 𝑧 Fn 𝐴) |
| 9 | 4, 5, 8 | 3bitr3i 301 | 1 ⊢ ([𝑧 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑧 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsbc 3744 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: bnj156 34714 bnj976 34763 bnj581 34894 |
| Copyright terms: Public domain | W3C validator |