Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj62 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj62 | ⊢ ([𝑧 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑧 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3441 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | fneq1 6555 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 Fn 𝐴 ↔ 𝑦 Fn 𝐴)) | |
3 | 1, 2 | sbcie 3764 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑦 Fn 𝐴) |
4 | 3 | sbcbii 3781 | . 2 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴 ↔ [𝑧 / 𝑦]𝑦 Fn 𝐴) |
5 | sbccow 3744 | . 2 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴 ↔ [𝑧 / 𝑥]𝑥 Fn 𝐴) | |
6 | vex 3441 | . . 3 ⊢ 𝑧 ∈ V | |
7 | fneq1 6555 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑦 Fn 𝐴 ↔ 𝑧 Fn 𝐴)) | |
8 | 6, 7 | sbcie 3764 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 Fn 𝐴 ↔ 𝑧 Fn 𝐴) |
9 | 4, 5, 8 | 3bitr3i 301 | 1 ⊢ ([𝑧 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑧 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsbc 3721 Fn wfn 6453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-fun 6460 df-fn 6461 |
This theorem is referenced by: bnj156 32756 bnj976 32806 bnj581 32937 |
Copyright terms: Public domain | W3C validator |