Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj62 Structured version   Visualization version   GIF version

Theorem bnj62 32678
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj62 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem bnj62
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3434 . . . 4 𝑦 ∈ V
2 fneq1 6520 . . . 4 (𝑥 = 𝑦 → (𝑥 Fn 𝐴𝑦 Fn 𝐴))
31, 2sbcie 3762 . . 3 ([𝑦 / 𝑥]𝑥 Fn 𝐴𝑦 Fn 𝐴)
43sbcbii 3780 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑦]𝑦 Fn 𝐴)
5 sbccow 3742 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝑥 Fn 𝐴[𝑧 / 𝑥]𝑥 Fn 𝐴)
6 vex 3434 . . 3 𝑧 ∈ V
7 fneq1 6520 . . 3 (𝑦 = 𝑧 → (𝑦 Fn 𝐴𝑧 Fn 𝐴))
86, 7sbcie 3762 . 2 ([𝑧 / 𝑦]𝑦 Fn 𝐴𝑧 Fn 𝐴)
94, 5, 83bitr3i 300 1 ([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsbc 3719   Fn wfn 6425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-fun 6432  df-fn 6433
This theorem is referenced by:  bnj156  32686  bnj976  32736  bnj581  32867
  Copyright terms: Public domain W3C validator