| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj923 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj923.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
| Ref | Expression |
|---|---|
| bnj923 | ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4111 | . 2 ⊢ (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω) | |
| 2 | bnj923.1 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 3 | 1, 2 | eleq2s 2853 | 1 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∅c0 4313 {csn 4606 ωcom 7866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 |
| This theorem is referenced by: bnj1098 34819 bnj544 34930 bnj546 34932 bnj594 34948 bnj580 34949 bnj966 34980 bnj967 34981 bnj970 34983 bnj1001 34995 bnj1053 35012 bnj1071 35013 bnj1118 35020 bnj1128 35026 bnj1145 35029 |
| Copyright terms: Public domain | W3C validator |