Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj923 Structured version   Visualization version   GIF version

Theorem bnj923 34744
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj923.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj923 (𝑛𝐷𝑛 ∈ ω)

Proof of Theorem bnj923
StepHypRef Expression
1 eldifi 4154 . 2 (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω)
2 bnj923.1 . 2 𝐷 = (ω ∖ {∅})
31, 2eleq2s 2862 1 (𝑛𝐷𝑛 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cdif 3973  c0 4352  {csn 4648  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979
This theorem is referenced by:  bnj1098  34759  bnj544  34870  bnj546  34872  bnj594  34888  bnj580  34889  bnj966  34920  bnj967  34921  bnj970  34923  bnj1001  34935  bnj1053  34952  bnj1071  34953  bnj1118  34960  bnj1128  34966  bnj1145  34969
  Copyright terms: Public domain W3C validator