| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj923 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj923.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
| Ref | Expression |
|---|---|
| bnj923 | ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4078 | . 2 ⊢ (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω) | |
| 2 | bnj923.1 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 3 | 1, 2 | eleq2s 2849 | 1 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∅c0 4280 {csn 4573 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 |
| This theorem is referenced by: bnj1098 34795 bnj544 34906 bnj546 34908 bnj594 34924 bnj580 34925 bnj966 34956 bnj967 34957 bnj970 34959 bnj1001 34971 bnj1053 34988 bnj1071 34989 bnj1118 34996 bnj1128 35002 bnj1145 35005 |
| Copyright terms: Public domain | W3C validator |