Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj923 Structured version   Visualization version   GIF version

Theorem bnj923 31944
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj923.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj923 (𝑛𝐷𝑛 ∈ ω)

Proof of Theorem bnj923
StepHypRef Expression
1 eldifi 4107 . 2 (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω)
2 bnj923.1 . 2 𝐷 = (ω ∖ {∅})
31, 2eleq2s 2936 1 (𝑛𝐷𝑛 ∈ ω)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1530   ∈ wcel 2107   ∖ cdif 3937  ∅c0 4295  {csn 4564  ωcom 7573 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-v 3502  df-dif 3943 This theorem is referenced by:  bnj1098  31960  bnj544  32071  bnj546  32073  bnj594  32089  bnj580  32090  bnj966  32121  bnj967  32122  bnj970  32124  bnj1001  32135  bnj1053  32151  bnj1071  32152  bnj1118  32159  bnj1128  32165  bnj1145  32168
 Copyright terms: Public domain W3C validator