| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj923 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj923.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
| Ref | Expression |
|---|---|
| bnj923 | ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4090 | . 2 ⊢ (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω) | |
| 2 | bnj923.1 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 3 | 1, 2 | eleq2s 2846 | 1 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ∅c0 4292 {csn 4585 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 |
| This theorem is referenced by: bnj1098 34766 bnj544 34877 bnj546 34879 bnj594 34895 bnj580 34896 bnj966 34927 bnj967 34928 bnj970 34930 bnj1001 34942 bnj1053 34959 bnj1071 34960 bnj1118 34967 bnj1128 34973 bnj1145 34976 |
| Copyright terms: Public domain | W3C validator |