Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj923 Structured version   Visualization version   GIF version

Theorem bnj923 34752
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj923.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj923 (𝑛𝐷𝑛 ∈ ω)

Proof of Theorem bnj923
StepHypRef Expression
1 eldifi 4090 . 2 (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω)
2 bnj923.1 . 2 𝐷 = (ω ∖ {∅})
31, 2eleq2s 2846 1 (𝑛𝐷𝑛 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3908  c0 4292  {csn 4585  ωcom 7822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-dif 3914
This theorem is referenced by:  bnj1098  34767  bnj544  34878  bnj546  34880  bnj594  34896  bnj580  34897  bnj966  34928  bnj967  34929  bnj970  34931  bnj1001  34943  bnj1053  34960  bnj1071  34961  bnj1118  34968  bnj1128  34974  bnj1145  34977
  Copyright terms: Public domain W3C validator