Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj923 Structured version   Visualization version   GIF version

Theorem bnj923 32648
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj923.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj923 (𝑛𝐷𝑛 ∈ ω)

Proof of Theorem bnj923
StepHypRef Expression
1 eldifi 4057 . 2 (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω)
2 bnj923.1 . 2 𝐷 = (ω ∖ {∅})
31, 2eleq2s 2857 1 (𝑛𝐷𝑛 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cdif 3880  c0 4253  {csn 4558  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886
This theorem is referenced by:  bnj1098  32663  bnj544  32774  bnj546  32776  bnj594  32792  bnj580  32793  bnj966  32824  bnj967  32825  bnj970  32827  bnj1001  32839  bnj1053  32856  bnj1071  32857  bnj1118  32864  bnj1128  32870  bnj1145  32873
  Copyright terms: Public domain W3C validator