Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj923 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj923.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj923 | ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4061 | . 2 ⊢ (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω) | |
2 | bnj923.1 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 1, 2 | eleq2s 2857 | 1 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∅c0 4256 {csn 4561 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 |
This theorem is referenced by: bnj1098 32763 bnj544 32874 bnj546 32876 bnj594 32892 bnj580 32893 bnj966 32924 bnj967 32925 bnj970 32927 bnj1001 32939 bnj1053 32956 bnj1071 32957 bnj1118 32964 bnj1128 32970 bnj1145 32973 |
Copyright terms: Public domain | W3C validator |