![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj923 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj923.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj923 | ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4141 | . 2 ⊢ (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω) | |
2 | bnj923.1 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 1, 2 | eleq2s 2857 | 1 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ∅c0 4339 {csn 4631 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 |
This theorem is referenced by: bnj1098 34776 bnj544 34887 bnj546 34889 bnj594 34905 bnj580 34906 bnj966 34937 bnj967 34938 bnj970 34940 bnj1001 34952 bnj1053 34969 bnj1071 34970 bnj1118 34977 bnj1128 34983 bnj1145 34986 |
Copyright terms: Public domain | W3C validator |