![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj923 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj923.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj923 | ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4154 | . 2 ⊢ (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω) | |
2 | bnj923.1 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 1, 2 | eleq2s 2862 | 1 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∅c0 4352 {csn 4648 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 |
This theorem is referenced by: bnj1098 34759 bnj544 34870 bnj546 34872 bnj594 34888 bnj580 34889 bnj966 34920 bnj967 34921 bnj970 34923 bnj1001 34935 bnj1053 34952 bnj1071 34953 bnj1118 34960 bnj1128 34966 bnj1145 34969 |
Copyright terms: Public domain | W3C validator |