Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj544 Structured version   Visualization version   GIF version

Theorem bnj544 34870
Description: Technical lemma for bnj852 34897. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj544.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj544.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj544.3 𝐷 = (ω ∖ {∅})
bnj544.4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj544.5 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj544.6 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
Assertion
Ref Expression
bnj544 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj544
StepHypRef Expression
1 bnj544.6 . . 3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
2 bnj544.3 . . . . 5 𝐷 = (ω ∖ {∅})
32bnj923 34744 . . . 4 (𝑚𝐷𝑚 ∈ ω)
433anim1i 1152 . . 3 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
51, 4sylbi 217 . 2 (𝜎 → (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
6 bnj544.1 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
7 bnj544.2 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
8 bnj544.4 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
9 bnj544.5 . . 3 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
10 biid 261 . . 3 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚) ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
116, 7, 8, 9, 10bnj543 34869 . 2 ((𝑅 FrSe 𝐴𝜏 ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚)) → 𝐺 Fn 𝑛)
125, 11syl3an3 1165 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cun 3974  c0 4352  {csn 4648  cop 4654   ciun 5015  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903   predc-bnj14 34664   FrSe w-bnj15 34668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-om 7904  df-bnj17 34663  df-bnj14 34665  df-bnj13 34667  df-bnj15 34669
This theorem is referenced by:  bnj600  34895  bnj908  34907
  Copyright terms: Public domain W3C validator