Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj544 Structured version   Visualization version   GIF version

Theorem bnj544 34906
Description: Technical lemma for bnj852 34933. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj544.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj544.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj544.3 𝐷 = (ω ∖ {∅})
bnj544.4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj544.5 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj544.6 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
Assertion
Ref Expression
bnj544 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj544
StepHypRef Expression
1 bnj544.6 . . 3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
2 bnj544.3 . . . . 5 𝐷 = (ω ∖ {∅})
32bnj923 34780 . . . 4 (𝑚𝐷𝑚 ∈ ω)
433anim1i 1152 . . 3 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
51, 4sylbi 217 . 2 (𝜎 → (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
6 bnj544.1 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
7 bnj544.2 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
8 bnj544.4 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
9 bnj544.5 . . 3 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
10 biid 261 . . 3 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚) ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
116, 7, 8, 9, 10bnj543 34905 . 2 ((𝑅 FrSe 𝐴𝜏 ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚)) → 𝐺 Fn 𝑛)
125, 11syl3an3 1165 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cdif 3894  cun 3895  c0 4280  {csn 4573  cop 4579   ciun 4939  suc csuc 6308   Fn wfn 6476  cfv 6481  ωcom 7796   predc-bnj14 34700   FrSe w-bnj15 34704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-om 7797  df-bnj17 34699  df-bnj14 34701  df-bnj13 34703  df-bnj15 34705
This theorem is referenced by:  bnj600  34931  bnj908  34943
  Copyright terms: Public domain W3C validator