![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj544 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34397. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj544.1 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj544.2 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj544.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj544.4 | ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) |
bnj544.5 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj544.6 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
Ref | Expression |
---|---|
bnj544 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj544.6 | . . 3 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
2 | bnj544.3 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 2 | bnj923 34244 | . . . 4 ⊢ (𝑚 ∈ 𝐷 → 𝑚 ∈ ω) |
4 | 3 | 3anim1i 1151 | . . 3 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
5 | 1, 4 | sylbi 216 | . 2 ⊢ (𝜎 → (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
6 | bnj544.1 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
7 | bnj544.2 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
8 | bnj544.4 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {⟨𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) | |
9 | bnj544.5 | . . 3 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
10 | biid 261 | . . 3 ⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
11 | 6, 7, 8, 9, 10 | bnj543 34369 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) → 𝐺 Fn 𝑛) |
12 | 5, 11 | syl3an3 1164 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∖ cdif 3945 ∪ cun 3946 ∅c0 4322 {csn 4628 ⟨cop 4634 ∪ ciun 4997 suc csuc 6366 Fn wfn 6538 ‘cfv 6543 ωcom 7859 predc-bnj14 34164 FrSe w-bnj15 34168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-reg 9593 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-om 7860 df-bnj17 34163 df-bnj14 34165 df-bnj13 34167 df-bnj15 34169 |
This theorem is referenced by: bnj600 34395 bnj908 34407 |
Copyright terms: Public domain | W3C validator |