![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj544 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34913. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj544.1 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj544.2 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj544.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj544.4 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
bnj544.5 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj544.6 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
Ref | Expression |
---|---|
bnj544 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj544.6 | . . 3 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
2 | bnj544.3 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 2 | bnj923 34760 | . . . 4 ⊢ (𝑚 ∈ 𝐷 → 𝑚 ∈ ω) |
4 | 3 | 3anim1i 1151 | . . 3 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
5 | 1, 4 | sylbi 217 | . 2 ⊢ (𝜎 → (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
6 | bnj544.1 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
7 | bnj544.2 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
8 | bnj544.4 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) | |
9 | bnj544.5 | . . 3 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
10 | biid 261 | . . 3 ⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
11 | 6, 7, 8, 9, 10 | bnj543 34885 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) → 𝐺 Fn 𝑛) |
12 | 5, 11 | syl3an3 1164 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∖ cdif 3959 ∪ cun 3960 ∅c0 4338 {csn 4630 〈cop 4636 ∪ ciun 4995 suc csuc 6387 Fn wfn 6557 ‘cfv 6562 ωcom 7886 predc-bnj14 34680 FrSe w-bnj15 34684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-reg 9629 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-fv 6570 df-om 7887 df-bnj17 34679 df-bnj14 34681 df-bnj13 34683 df-bnj15 34685 |
This theorem is referenced by: bnj600 34911 bnj908 34923 |
Copyright terms: Public domain | W3C validator |