MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnvc Structured version   Visualization version   GIF version

Theorem bnnvc 24856
Description: A Banach space is a normed vector space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
bnnvc (π‘Š ∈ Ban β†’ π‘Š ∈ NrmVec)

Proof of Theorem bnnvc
StepHypRef Expression
1 eqid 2732 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
21isbn 24854 . 2 (π‘Š ∈ Ban ↔ (π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp ∧ (Scalarβ€˜π‘Š) ∈ CMetSp))
32simp1bi 1145 1 (π‘Š ∈ Ban β†’ π‘Š ∈ NrmVec)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  β€˜cfv 6543  Scalarcsca 17199  NrmVeccnvc 24089  CMetSpccms 24848  Bancbn 24849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-bn 24852
This theorem is referenced by:  bnnlm  24857  lssbn  24868  bncssbn  24890  cmslsschl  24893
  Copyright terms: Public domain W3C validator