MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnvc Structured version   Visualization version   GIF version

Theorem bnnvc 25212
Description: A Banach space is a normed vector space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
bnnvc (π‘Š ∈ Ban β†’ π‘Š ∈ NrmVec)

Proof of Theorem bnnvc
StepHypRef Expression
1 eqid 2724 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
21isbn 25210 . 2 (π‘Š ∈ Ban ↔ (π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp ∧ (Scalarβ€˜π‘Š) ∈ CMetSp))
32simp1bi 1142 1 (π‘Š ∈ Ban β†’ π‘Š ∈ NrmVec)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  β€˜cfv 6534  Scalarcsca 17205  NrmVeccnvc 24434  CMetSpccms 25204  Bancbn 25205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-iota 6486  df-fv 6542  df-bn 25208
This theorem is referenced by:  bnnlm  25213  lssbn  25224  bncssbn  25246  cmslsschl  25249
  Copyright terms: Public domain W3C validator