MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnngp Structured version   Visualization version   GIF version

Theorem bnngp 24850
Description: A Banach space is a normed group. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
bnngp (𝑊 ∈ Ban → 𝑊 ∈ NrmGrp)

Proof of Theorem bnngp
StepHypRef Expression
1 bnnlm 24849 . 2 (𝑊 ∈ Ban → 𝑊 ∈ NrmMod)
2 nlmngp 24185 . 2 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 1 (𝑊 ∈ Ban → 𝑊 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  NrmGrpcngp 24077  NrmModcnlm 24080  Bancbn 24841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408  df-nlm 24086  df-nvc 24087  df-bn 24844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator