| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brabd0 | Structured version Visualization version GIF version | ||
| Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
| Ref | Expression |
|---|---|
| brabd0.x | ⊢ (𝜑 → ∀𝑥𝜑) |
| brabd0.y | ⊢ (𝜑 → ∀𝑦𝜑) |
| brabd0.xch | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| brabd0.ych | ⊢ (𝜑 → Ⅎ𝑦𝜒) |
| brabd0.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| brabd0.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| brabd0.def | ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| brabd0.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| brabd0 | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5124 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | brabd0.def | . . . 4 ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 3 | 2 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) |
| 4 | 1, 3 | bitrid 283 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) |
| 5 | brabd0.x | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 6 | brabd0.y | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 7 | brabd0.xch | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 8 | brabd0.ych | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
| 9 | brabd0.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 10 | brabd0.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 11 | brabd0.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 12 | 5, 6, 7, 8, 9, 10, 11 | opelopabd 37101 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜒)) |
| 13 | 4, 12 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 〈cop 4612 class class class wbr 5123 {copab 5185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 |
| This theorem is referenced by: brabd 37108 |
| Copyright terms: Public domain | W3C validator |