Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brabd0 | Structured version Visualization version GIF version |
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
Ref | Expression |
---|---|
brabd0.x | ⊢ (𝜑 → ∀𝑥𝜑) |
brabd0.y | ⊢ (𝜑 → ∀𝑦𝜑) |
brabd0.xch | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
brabd0.ych | ⊢ (𝜑 → Ⅎ𝑦𝜒) |
brabd0.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
brabd0.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
brabd0.def | ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
brabd0.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
brabd0 | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | brabd0.def | . . . 4 ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
3 | 2 | eleq2d 2824 | . . 3 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) |
4 | 1, 3 | syl5bb 282 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) |
5 | brabd0.x | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
6 | brabd0.y | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
7 | brabd0.xch | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
8 | brabd0.ych | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
9 | brabd0.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
10 | brabd0.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
11 | brabd0.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
12 | 5, 6, 7, 8, 9, 10, 11 | opelopabd 35239 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜒)) |
13 | 4, 12 | bitrd 278 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 |
This theorem is referenced by: brabd 35246 |
Copyright terms: Public domain | W3C validator |