![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brabd0 | Structured version Visualization version GIF version |
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
Ref | Expression |
---|---|
brabd0.x | ⊢ (𝜑 → ∀𝑥𝜑) |
brabd0.y | ⊢ (𝜑 → ∀𝑦𝜑) |
brabd0.xch | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
brabd0.ych | ⊢ (𝜑 → Ⅎ𝑦𝜒) |
brabd0.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
brabd0.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
brabd0.def | ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
brabd0.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
brabd0 | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5150 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | brabd0.def | . . . 4 ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
3 | 2 | eleq2d 2811 | . . 3 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) |
4 | 1, 3 | bitrid 282 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) |
5 | brabd0.x | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
6 | brabd0.y | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
7 | brabd0.xch | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
8 | brabd0.ych | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
9 | brabd0.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
10 | brabd0.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
11 | brabd0.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
12 | 5, 6, 7, 8, 9, 10, 11 | opelopabd 36748 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜒)) |
13 | 4, 12 | bitrd 278 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 〈cop 4636 class class class wbr 5149 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 |
This theorem is referenced by: brabd 36755 |
Copyright terms: Public domain | W3C validator |