Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabd Structured version   Visualization version   GIF version

Theorem brabd 34427
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.)
Hypotheses
Ref Expression
brabd.exa (𝜑𝐴𝑈)
brabd.exb (𝜑𝐵𝑉)
brabd.def (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
brabd.is ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
brabd (𝜑 → (𝐴𝑅𝐵𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem brabd
StepHypRef Expression
1 ax-5 1904 . 2 (𝜑 → ∀𝑥𝜑)
2 ax-5 1904 . 2 (𝜑 → ∀𝑦𝜑)
3 nfvd 1909 . 2 (𝜑 → Ⅎ𝑥𝜒)
4 nfvd 1909 . 2 (𝜑 → Ⅎ𝑦𝜒)
5 brabd.exa . 2 (𝜑𝐴𝑈)
6 brabd.exb . 2 (𝜑𝐵𝑉)
7 brabd.def . 2 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
8 brabd.is . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
91, 2, 3, 4, 5, 6, 7, 8brabd0 34426 1 (𝜑 → (𝐴𝑅𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107   class class class wbr 5057  {copab 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-br 5058  df-opab 5120
This theorem is referenced by:  bj-imdirval3  34461
  Copyright terms: Public domain W3C validator