| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brabd | Structured version Visualization version GIF version | ||
| Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
| Ref | Expression |
|---|---|
| brabd.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| brabd.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| brabd.def | ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| brabd.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| brabd | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1911 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-5 1911 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 3 | nfvd 1916 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | nfvd 1916 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
| 5 | brabd.exa | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 6 | brabd.exb | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | brabd.def | . 2 ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 8 | brabd.is | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | brabd0 37181 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 {copab 5148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 |
| This theorem is referenced by: bj-imdirval3 37218 |
| Copyright terms: Public domain | W3C validator |