Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabd Structured version   Visualization version   GIF version

Theorem brabd 37182
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.)
Hypotheses
Ref Expression
brabd.exa (𝜑𝐴𝑈)
brabd.exb (𝜑𝐵𝑉)
brabd.def (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
brabd.is ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
brabd (𝜑 → (𝐴𝑅𝐵𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem brabd
StepHypRef Expression
1 ax-5 1911 . 2 (𝜑 → ∀𝑥𝜑)
2 ax-5 1911 . 2 (𝜑 → ∀𝑦𝜑)
3 nfvd 1916 . 2 (𝜑 → Ⅎ𝑥𝜒)
4 nfvd 1916 . 2 (𝜑 → Ⅎ𝑦𝜒)
5 brabd.exa . 2 (𝜑𝐴𝑈)
6 brabd.exb . 2 (𝜑𝐵𝑉)
7 brabd.def . 2 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
8 brabd.is . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
91, 2, 3, 4, 5, 6, 7, 8brabd0 37181 1 (𝜑 → (𝐴𝑅𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  {copab 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149
This theorem is referenced by:  bj-imdirval3  37218
  Copyright terms: Public domain W3C validator