| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopabd | Structured version Visualization version GIF version | ||
| Description: Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
| Ref | Expression |
|---|---|
| opelopabd.xph | ⊢ (𝜑 → ∀𝑥𝜑) |
| opelopabd.yph | ⊢ (𝜑 → ∀𝑦𝜑) |
| opelopabd.xch | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| opelopabd.ych | ⊢ (𝜑 → Ⅎ𝑦𝜒) |
| opelopabd.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| opelopabd.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| opelopabd.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opelopabd | ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 5507 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓)) | |
| 2 | opelopabd.xph | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | opelopabd.yph | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 4 | opelopabd.xch | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | opelopabd.ych | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
| 6 | opelopabd.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 7 | opelopabd.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 8 | opelopabd.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | copsex2d 37162 | . 2 ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) |
| 10 | 1, 9 | bitrid 283 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 〈cop 4612 {copab 5186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 |
| This theorem is referenced by: brabd0 37170 |
| Copyright terms: Public domain | W3C validator |