| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopabd | Structured version Visualization version GIF version | ||
| Description: Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
| Ref | Expression |
|---|---|
| opelopabd.xph | ⊢ (𝜑 → ∀𝑥𝜑) |
| opelopabd.yph | ⊢ (𝜑 → ∀𝑦𝜑) |
| opelopabd.xch | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| opelopabd.ych | ⊢ (𝜑 → Ⅎ𝑦𝜒) |
| opelopabd.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| opelopabd.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| opelopabd.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opelopabd | ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 5470 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓)) | |
| 2 | opelopabd.xph | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | opelopabd.yph | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 4 | opelopabd.xch | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | opelopabd.ych | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
| 6 | opelopabd.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 7 | opelopabd.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 8 | opelopabd.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | copsex2d 37190 | . 2 ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) |
| 10 | 1, 9 | bitrid 283 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 〈cop 4581 {copab 5155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-opab 5156 |
| This theorem is referenced by: brabd0 37198 |
| Copyright terms: Public domain | W3C validator |