Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelopabd Structured version   Visualization version   GIF version

Theorem opelopabd 37164
Description: Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.)
Hypotheses
Ref Expression
opelopabd.xph (𝜑 → ∀𝑥𝜑)
opelopabd.yph (𝜑 → ∀𝑦𝜑)
opelopabd.xch (𝜑 → Ⅎ𝑥𝜒)
opelopabd.ych (𝜑 → Ⅎ𝑦𝜒)
opelopabd.exa (𝜑𝐴𝑈)
opelopabd.exb (𝜑𝐵𝑉)
opelopabd.is ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
opelopabd (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ 𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem opelopabd
StepHypRef Expression
1 elopab 5507 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
2 opelopabd.xph . . 3 (𝜑 → ∀𝑥𝜑)
3 opelopabd.yph . . 3 (𝜑 → ∀𝑦𝜑)
4 opelopabd.xch . . 3 (𝜑 → Ⅎ𝑥𝜒)
5 opelopabd.ych . . 3 (𝜑 → Ⅎ𝑦𝜒)
6 opelopabd.exa . . 3 (𝜑𝐴𝑈)
7 opelopabd.exb . . 3 (𝜑𝐵𝑉)
8 opelopabd.is . . 3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
92, 3, 4, 5, 6, 7, 8copsex2d 37162 . 2 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
101, 9bitrid 283 1 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wnf 1783  wcel 2109  cop 4612  {copab 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-opab 5187
This theorem is referenced by:  brabd0  37170
  Copyright terms: Public domain W3C validator