![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopabd | Structured version Visualization version GIF version |
Description: Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.) |
Ref | Expression |
---|---|
opelopabd.xph | ⊢ (𝜑 → ∀𝑥𝜑) |
opelopabd.yph | ⊢ (𝜑 → ∀𝑦𝜑) |
opelopabd.xch | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
opelopabd.ych | ⊢ (𝜑 → Ⅎ𝑦𝜒) |
opelopabd.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
opelopabd.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
opelopabd.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabd | ⊢ (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5517 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∃𝑥∃𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) | |
2 | opelopabd.xph | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | opelopabd.yph | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
4 | opelopabd.xch | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | opelopabd.ych | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
6 | opelopabd.exa | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
7 | opelopabd.exb | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
8 | opelopabd.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
9 | 2, 3, 4, 5, 6, 7, 8 | copsex2d 36476 | . 2 ⊢ (𝜑 → (∃𝑥∃𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒)) |
10 | 1, 9 | bitrid 283 | 1 ⊢ (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∃wex 1773 Ⅎwnf 1777 ∈ wcel 2098 ⟨cop 4626 {copab 5200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-opab 5201 |
This theorem is referenced by: brabd0 36484 |
Copyright terms: Public domain | W3C validator |