Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelopabd Structured version   Visualization version   GIF version

Theorem opelopabd 36478
Description: Membership of an ordere pair in a class abstraction of ordered pairs. (Contributed by BJ, 17-Dec-2023.)
Hypotheses
Ref Expression
opelopabd.xph (𝜑 → ∀𝑥𝜑)
opelopabd.yph (𝜑 → ∀𝑦𝜑)
opelopabd.xch (𝜑 → Ⅎ𝑥𝜒)
opelopabd.ych (𝜑 → Ⅎ𝑦𝜒)
opelopabd.exa (𝜑𝐴𝑈)
opelopabd.exb (𝜑𝐵𝑉)
opelopabd.is ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
opelopabd (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ 𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem opelopabd
StepHypRef Expression
1 elopab 5517 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
2 opelopabd.xph . . 3 (𝜑 → ∀𝑥𝜑)
3 opelopabd.yph . . 3 (𝜑 → ∀𝑦𝜑)
4 opelopabd.xch . . 3 (𝜑 → Ⅎ𝑥𝜒)
5 opelopabd.ych . . 3 (𝜑 → Ⅎ𝑦𝜒)
6 opelopabd.exa . . 3 (𝜑𝐴𝑈)
7 opelopabd.exb . . 3 (𝜑𝐵𝑉)
8 opelopabd.is . . 3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
92, 3, 4, 5, 6, 7, 8copsex2d 36476 . 2 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
101, 9bitrid 283 1 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wex 1773  wnf 1777  wcel 2098  cop 4626  {copab 5200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-opab 5201
This theorem is referenced by:  brabd0  36484
  Copyright terms: Public domain W3C validator