| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brabidga | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. Special case of brabga 5521. Usage of this theorem is discouraged because it depends on ax-13 2375, see brabidgaw 38307 for a weaker version that does not require it. (Contributed by Peter Mazsa, 24-Nov-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| brabidga.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabidga | ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brabidga.1 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | breqi 5131 | . 2 ⊢ (𝑥𝑅𝑦 ↔ 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
| 3 | df-br 5126 | . 2 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 4 | opabid 5512 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 5 | 2, 3, 4 | 3bitri 297 | 1 ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 〈cop 4614 class class class wbr 5125 {copab 5187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-13 2375 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |