Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brabidga | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. Special case of brabga 5440. Usage of this theorem is discouraged because it depends on ax-13 2372, see brabidgaw 36422 for a weaker version that does not require it. (Contributed by Peter Mazsa, 24-Nov-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
brabidga.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabidga | ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brabidga.1 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | breqi 5076 | . 2 ⊢ (𝑥𝑅𝑦 ↔ 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
3 | df-br 5071 | . 2 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
4 | opabid 5432 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
5 | 2, 3, 4 | 3bitri 296 | 1 ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-13 2372 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |