Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bralgext Structured version   Visualization version   GIF version

Theorem bralgext 33683
Description: Express the fact that a field extension 𝐸 / 𝐹 is algebraic. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypotheses
Ref Expression
bralgext.b 𝐵 = (Base‘𝐸)
bralgext.c 𝐶 = (Base‘𝐹)
bralgext.e (𝜑𝐸𝑉)
bralgext.f (𝜑𝐹𝑉)
Assertion
Ref Expression
bralgext (𝜑 → (𝐸/AlgExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸 IntgRing 𝐶) = 𝐵)))

Proof of Theorem bralgext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bralgext.e . 2 (𝜑𝐸𝑉)
2 bralgext.f . 2 (𝜑𝐹𝑉)
3 breq12 5100 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒/FldExt𝑓𝐸/FldExt𝐹))
4 simpl 482 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑒 = 𝐸)
5 fveq2 6826 . . . . . . . 8 (𝑓 = 𝐹 → (Base‘𝑓) = (Base‘𝐹))
6 bralgext.c . . . . . . . 8 𝐶 = (Base‘𝐹)
75, 6eqtr4di 2782 . . . . . . 7 (𝑓 = 𝐹 → (Base‘𝑓) = 𝐶)
87adantl 481 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑓) = 𝐶)
94, 8oveq12d 7371 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 IntgRing (Base‘𝑓)) = (𝐸 IntgRing 𝐶))
10 fveq2 6826 . . . . . . 7 (𝑒 = 𝐸 → (Base‘𝑒) = (Base‘𝐸))
11 bralgext.b . . . . . . 7 𝐵 = (Base‘𝐸)
1210, 11eqtr4di 2782 . . . . . 6 (𝑒 = 𝐸 → (Base‘𝑒) = 𝐵)
1312adantr 480 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑒) = 𝐵)
149, 13eqeq12d 2745 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒) ↔ (𝐸 IntgRing 𝐶) = 𝐵))
153, 14anbi12d 632 . . 3 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒)) ↔ (𝐸/FldExt𝐹 ∧ (𝐸 IntgRing 𝐶) = 𝐵)))
16 df-algext 33682 . . 3 /AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒))}
1715, 16brabga 5481 . 2 ((𝐸𝑉𝐹𝑉) → (𝐸/AlgExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸 IntgRing 𝐶) = 𝐵)))
181, 2, 17syl2anc 584 1 (𝜑 → (𝐸/AlgExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸 IntgRing 𝐶) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17139  /FldExtcfldext 33624   IntgRing cirng 33669  /AlgExtcalgext 33681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-iota 6442  df-fv 6494  df-ov 7356  df-algext 33682
This theorem is referenced by:  finextalg  33684
  Copyright terms: Public domain W3C validator