| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bralgext | Structured version Visualization version GIF version | ||
| Description: Express the fact that a field extension 𝐸 / 𝐹 is algebraic. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| bralgext.b | ⊢ 𝐵 = (Base‘𝐸) |
| bralgext.c | ⊢ 𝐶 = (Base‘𝐹) |
| bralgext.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| bralgext.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| bralgext | ⊢ (𝜑 → (𝐸/AlgExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸 IntgRing 𝐶) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bralgext.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 2 | bralgext.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | breq12 5091 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒/FldExt𝑓 ↔ 𝐸/FldExt𝐹)) | |
| 4 | simpl 482 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑒 = 𝐸) | |
| 5 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (Base‘𝑓) = (Base‘𝐹)) | |
| 6 | bralgext.c | . . . . . . . 8 ⊢ 𝐶 = (Base‘𝐹) | |
| 7 | 5, 6 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (Base‘𝑓) = 𝐶) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐶) |
| 9 | 4, 8 | oveq12d 7359 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒 IntgRing (Base‘𝑓)) = (𝐸 IntgRing 𝐶)) |
| 10 | fveq2 6817 | . . . . . . 7 ⊢ (𝑒 = 𝐸 → (Base‘𝑒) = (Base‘𝐸)) | |
| 11 | bralgext.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐸) | |
| 12 | 10, 11 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑒 = 𝐸 → (Base‘𝑒) = 𝐵) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (Base‘𝑒) = 𝐵) |
| 14 | 9, 13 | eqeq12d 2747 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒) ↔ (𝐸 IntgRing 𝐶) = 𝐵)) |
| 15 | 3, 14 | anbi12d 632 | . . 3 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒)) ↔ (𝐸/FldExt𝐹 ∧ (𝐸 IntgRing 𝐶) = 𝐵))) |
| 16 | df-algext 33701 | . . 3 ⊢ /AlgExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒))} | |
| 17 | 15, 16 | brabga 5469 | . 2 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉) → (𝐸/AlgExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸 IntgRing 𝐶) = 𝐵))) |
| 18 | 1, 2, 17 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐸/AlgExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸 IntgRing 𝐶) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 /FldExtcfldext 33643 IntgRing cirng 33688 /AlgExtcalgext 33700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-iota 6432 df-fv 6484 df-ov 7344 df-algext 33701 |
| This theorem is referenced by: finextalg 33703 |
| Copyright terms: Public domain | W3C validator |