Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvssrid Structured version   Visualization version   GIF version

Theorem brcnvssrid 36552
Description: Any set is a converse subset of itself. (Contributed by Peter Mazsa, 9-Jun-2021.)
Assertion
Ref Expression
brcnvssrid (𝐴𝑉𝐴 S 𝐴)

Proof of Theorem brcnvssrid
StepHypRef Expression
1 ssid 3939 . 2 𝐴𝐴
2 brcnvssr 36551 . 2 (𝐴𝑉 → (𝐴 S 𝐴𝐴𝐴))
31, 2mpbiri 257 1 (𝐴𝑉𝐴 S 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883   class class class wbr 5070  ccnv 5579   S cssr 36263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-ssr 36543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator