Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvssrid Structured version   Visualization version   GIF version

Theorem brcnvssrid 38467
Description: Any set is a converse subset of itself. (Contributed by Peter Mazsa, 9-Jun-2021.)
Assertion
Ref Expression
brcnvssrid (𝐴𝑉𝐴 S 𝐴)

Proof of Theorem brcnvssrid
StepHypRef Expression
1 ssid 3986 . 2 𝐴𝐴
2 brcnvssr 38466 . 2 (𝐴𝑉 → (𝐴 S 𝐴𝐴𝐴))
31, 2mpbiri 258 1 (𝐴𝑉𝐴 S 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3931   class class class wbr 5123  ccnv 5664   S cssr 38144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-ssr 38458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator