Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrncnvssrres | Structured version Visualization version GIF version |
Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
Ref | Expression |
---|---|
br1cossxrncnvssrres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossxrnres 36493 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)))) | |
2 | brcnvssr 36551 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢)) | |
3 | 2 | elv 3428 | . . . . 5 ⊢ (𝑢◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢) |
4 | 3 | anbi1i 623 | . . . 4 ⊢ ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵)) |
5 | brcnvssr 36551 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢)) | |
6 | 5 | elv 3428 | . . . . 5 ⊢ (𝑢◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢) |
7 | 6 | anbi1i 623 | . . . 4 ⊢ ((𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)) |
8 | 4, 7 | anbi12i 626 | . . 3 ⊢ (((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷))) |
9 | 8 | rexbii 3177 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷))) |
10 | 1, 9 | bitrdi 286 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 ◡ccnv 5579 ↾ cres 5582 ⋉ cxrn 36259 ≀ ccoss 36260 S cssr 36263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-xrn 36428 df-coss 36464 df-ssr 36543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |