Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrncnvssrres | Structured version Visualization version GIF version |
Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
Ref | Expression |
---|---|
br1cossxrncnvssrres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossxrnres 36566 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)))) | |
2 | brcnvssr 36624 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢)) | |
3 | 2 | elv 3438 | . . . . 5 ⊢ (𝑢◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢) |
4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵)) |
5 | brcnvssr 36624 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢)) | |
6 | 5 | elv 3438 | . . . . 5 ⊢ (𝑢◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢) |
7 | 6 | anbi1i 624 | . . . 4 ⊢ ((𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)) |
8 | 4, 7 | anbi12i 627 | . . 3 ⊢ (((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷))) |
9 | 8 | rexbii 3181 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷))) |
10 | 1, 9 | bitrdi 287 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 〈cop 4567 class class class wbr 5074 ◡ccnv 5588 ↾ cres 5591 ⋉ cxrn 36332 ≀ ccoss 36333 S cssr 36336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-xrn 36501 df-coss 36537 df-ssr 36616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |