| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrncnvssrres | Structured version Visualization version GIF version | ||
| Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
| Ref | Expression |
|---|---|
| br1cossxrncnvssrres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1cossxrnres 38432 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)))) | |
| 2 | brcnvssr 38490 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢)) | |
| 3 | 2 | elv 3449 | . . . . 5 ⊢ (𝑢◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢) |
| 4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵)) |
| 5 | brcnvssr 38490 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢)) | |
| 6 | 5 | elv 3449 | . . . . 5 ⊢ (𝑢◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢) |
| 7 | 6 | anbi1i 624 | . . . 4 ⊢ ((𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)) |
| 8 | 4, 7 | anbi12i 628 | . . 3 ⊢ (((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷))) |
| 9 | 8 | rexbii 3076 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷))) |
| 10 | 1, 9 | bitrdi 287 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 〈cop 4591 class class class wbr 5102 ◡ccnv 5630 ↾ cres 5633 ⋉ cxrn 38161 ≀ ccoss 38162 S cssr 38165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1st 7947 df-2nd 7948 df-xrn 38346 df-coss 38395 df-ssr 38482 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |