Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrncnvssrres | Structured version Visualization version GIF version |
Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
Ref | Expression |
---|---|
br1cossxrncnvssrres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossxrnres 36562 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)))) | |
2 | brcnvssr 36620 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢)) | |
3 | 2 | elv 3437 | . . . . 5 ⊢ (𝑢◡ S 𝐶 ↔ 𝐶 ⊆ 𝑢) |
4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵)) |
5 | brcnvssr 36620 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢)) | |
6 | 5 | elv 3437 | . . . . 5 ⊢ (𝑢◡ S 𝐸 ↔ 𝐸 ⊆ 𝑢) |
7 | 6 | anbi1i 624 | . . . 4 ⊢ ((𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)) |
8 | 4, 7 | anbi12i 627 | . . 3 ⊢ (((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷))) |
9 | 8 | rexbii 3180 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ S 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ S 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷))) |
10 | 1, 9 | bitrdi 287 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2110 ∃wrex 3067 Vcvv 3431 ⊆ wss 3892 〈cop 4573 class class class wbr 5079 ◡ccnv 5589 ↾ cres 5592 ⋉ cxrn 36328 ≀ ccoss 36329 S cssr 36332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fo 6438 df-fv 6440 df-1st 7824 df-2nd 7825 df-xrn 36497 df-coss 36533 df-ssr 36612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |