Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprslem Structured version   Visualization version   GIF version

Theorem catprslem 46179
Description: Lemma for catprs 46180. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catprs.1 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
catprslem.x (𝜑𝑋𝐵)
catprslem.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catprslem (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem catprslem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catprs.1 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
2 breq1 5073 . . . . 5 (𝑥 = 𝑧 → (𝑥 𝑦𝑧 𝑦))
3 oveq1 7262 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐻𝑦) = (𝑧𝐻𝑦))
43neeq1d 3002 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑦) ≠ ∅))
52, 4bibi12d 345 . . . 4 (𝑥 = 𝑧 → ((𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅) ↔ (𝑧 𝑦 ↔ (𝑧𝐻𝑦) ≠ ∅)))
6 breq2 5074 . . . . 5 (𝑦 = 𝑤 → (𝑧 𝑦𝑧 𝑤))
7 oveq2 7263 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝐻𝑦) = (𝑧𝐻𝑤))
87neeq1d 3002 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅))
96, 8bibi12d 345 . . . 4 (𝑦 = 𝑤 → ((𝑧 𝑦 ↔ (𝑧𝐻𝑦) ≠ ∅) ↔ (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)))
105, 9cbvral2vw 3385 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅) ↔ ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
111, 10sylib 217 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
12 catprslem.x . . 3 (𝜑𝑋𝐵)
13 catprslem.y . . 3 (𝜑𝑌𝐵)
14 breq12 5075 . . . . 5 ((𝑧 = 𝑋𝑤 = 𝑌) → (𝑧 𝑤𝑋 𝑌))
15 oveq12 7264 . . . . . 6 ((𝑧 = 𝑋𝑤 = 𝑌) → (𝑧𝐻𝑤) = (𝑋𝐻𝑌))
1615neeq1d 3002 . . . . 5 ((𝑧 = 𝑋𝑤 = 𝑌) → ((𝑧𝐻𝑤) ≠ ∅ ↔ (𝑋𝐻𝑌) ≠ ∅))
1714, 16bibi12d 345 . . . 4 ((𝑧 = 𝑋𝑤 = 𝑌) → ((𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅) ↔ (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)))
1817rspc2gv 3561 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅) → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)))
1912, 13, 18syl2anc 583 . 2 (𝜑 → (∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅) → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)))
2011, 19mpd 15 1 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  c0 4253   class class class wbr 5070  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  catprs  46180
  Copyright terms: Public domain W3C validator