Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprslem Structured version   Visualization version   GIF version

Theorem catprslem 47708
Description: Lemma for catprs 47709. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catprs.1 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
catprslem.x (𝜑𝑋𝐵)
catprslem.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catprslem (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem catprslem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catprs.1 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
2 breq1 5151 . . . . 5 (𝑥 = 𝑧 → (𝑥 𝑦𝑧 𝑦))
3 oveq1 7418 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐻𝑦) = (𝑧𝐻𝑦))
43neeq1d 3000 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑦) ≠ ∅))
52, 4bibi12d 345 . . . 4 (𝑥 = 𝑧 → ((𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅) ↔ (𝑧 𝑦 ↔ (𝑧𝐻𝑦) ≠ ∅)))
6 breq2 5152 . . . . 5 (𝑦 = 𝑤 → (𝑧 𝑦𝑧 𝑤))
7 oveq2 7419 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝐻𝑦) = (𝑧𝐻𝑤))
87neeq1d 3000 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅))
96, 8bibi12d 345 . . . 4 (𝑦 = 𝑤 → ((𝑧 𝑦 ↔ (𝑧𝐻𝑦) ≠ ∅) ↔ (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)))
105, 9cbvral2vw 3238 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅) ↔ ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
111, 10sylib 217 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
12 catprslem.x . . 3 (𝜑𝑋𝐵)
13 catprslem.y . . 3 (𝜑𝑌𝐵)
14 breq12 5153 . . . . 5 ((𝑧 = 𝑋𝑤 = 𝑌) → (𝑧 𝑤𝑋 𝑌))
15 oveq12 7420 . . . . . 6 ((𝑧 = 𝑋𝑤 = 𝑌) → (𝑧𝐻𝑤) = (𝑋𝐻𝑌))
1615neeq1d 3000 . . . . 5 ((𝑧 = 𝑋𝑤 = 𝑌) → ((𝑧𝐻𝑤) ≠ ∅ ↔ (𝑋𝐻𝑌) ≠ ∅))
1714, 16bibi12d 345 . . . 4 ((𝑧 = 𝑋𝑤 = 𝑌) → ((𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅) ↔ (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)))
1817rspc2gv 3621 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅) → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)))
1912, 13, 18syl2anc 584 . 2 (𝜑 → (∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅) → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)))
2011, 19mpd 15 1 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  c0 4322   class class class wbr 5148  (class class class)co 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414
This theorem is referenced by:  catprs  47709
  Copyright terms: Public domain W3C validator