Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprs Structured version   Visualization version   GIF version

Theorem catprs 45908
Description: A preorder can be extracted from a category. See catprs2 45909 for more details. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catprs.1 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
catprs.b (𝜑𝐵 = (Base‘𝐶))
catprs.h (𝜑𝐻 = (Hom ‘𝐶))
catprs.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
catprs ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem catprs
StepHypRef Expression
1 eqid 2736 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2736 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2736 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
4 catprs.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
54adantr 484 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐶 ∈ Cat)
6 simpr1 1196 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
7 catprs.b . . . . . . . 8 (𝜑𝐵 = (Base‘𝐶))
87adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐵 = (Base‘𝐶))
96, 8eleqtrd 2833 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 ∈ (Base‘𝐶))
101, 2, 3, 5, 9catidcl 17139 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
11 catprs.h . . . . . . 7 (𝜑𝐻 = (Hom ‘𝐶))
1211adantr 484 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐻 = (Hom ‘𝐶))
1312oveqd 7208 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐻𝑋) = (𝑋(Hom ‘𝐶)𝑋))
1410, 13eleqtrrd 2834 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
1514ne0d 4236 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐻𝑋) ≠ ∅)
16 catprs.1 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
1716adantr 484 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
1817, 6, 6catprslem 45907 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ↔ (𝑋𝐻𝑋) ≠ ∅))
1915, 18mpbird 260 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 𝑋)
2011ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝐻 = (Hom ‘𝐶))
2120oveqd 7208 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑍) = (𝑋(Hom ‘𝐶)𝑍))
227eleq2d 2816 . . . . . . . 8 (𝜑 → (𝑋𝐵𝑋 ∈ (Base‘𝐶)))
237eleq2d 2816 . . . . . . . 8 (𝜑 → (𝑌𝐵𝑌 ∈ (Base‘𝐶)))
247eleq2d 2816 . . . . . . . 8 (𝜑 → (𝑍𝐵𝑍 ∈ (Base‘𝐶)))
2522, 23, 243anbi123d 1438 . . . . . . 7 (𝜑 → ((𝑋𝐵𝑌𝐵𝑍𝐵) ↔ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))))
2625pm5.32i 578 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ↔ (𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))))
27 eqid 2736 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
284ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝐶 ∈ Cat)
29 simplr1 1217 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 ∈ (Base‘𝐶))
30 simplr2 1218 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑌 ∈ (Base‘𝐶))
31 simplr3 1219 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑍 ∈ (Base‘𝐶))
3220oveqd 7208 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
33 simpr2 1197 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
3417, 6, 33catprslem 45907 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
3534biimpa 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑌) → (𝑋𝐻𝑌) ≠ ∅)
3635adantrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑌) ≠ ∅)
3732, 36eqnetrrd 3000 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑌) ≠ ∅)
3826, 37sylanbr 585 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑌) ≠ ∅)
3920oveqd 7208 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍))
40 simpr3 1198 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
4117, 33, 40catprslem 45907 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍 ↔ (𝑌𝐻𝑍) ≠ ∅))
4241biimpa 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑌 𝑍) → (𝑌𝐻𝑍) ≠ ∅)
4342adantrl 716 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌𝐻𝑍) ≠ ∅)
4439, 43eqnetrrd 3000 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌(Hom ‘𝐶)𝑍) ≠ ∅)
4526, 44sylanbr 585 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌(Hom ‘𝐶)𝑍) ≠ ∅)
461, 2, 27, 28, 29, 30, 31, 38, 45catcone0 17144 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑍) ≠ ∅)
4726, 46sylanb 584 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑍) ≠ ∅)
4821, 47eqnetrd 2999 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑍) ≠ ∅)
4917, 6, 40catprslem 45907 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 ↔ (𝑋𝐻𝑍) ≠ ∅))
5049adantr 484 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋 𝑍 ↔ (𝑋𝐻𝑍) ≠ ∅))
5148, 50mpbird 260 . . 3 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
5251ex 416 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))
5319, 52jca 515 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  c0 4223   class class class wbr 5039  cfv 6358  (class class class)co 7191  Basecbs 16666  Hom chom 16760  compcco 16761  Catccat 17121  Idccid 17122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-cat 17125  df-cid 17126
This theorem is referenced by:  catprs2  45909
  Copyright terms: Public domain W3C validator