Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprs Structured version   Visualization version   GIF version

Theorem catprs 48996
Description: A preorder can be extracted from a category. See catprs2 48997 for more details. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catprs.1 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
catprs.b (𝜑𝐵 = (Base‘𝐶))
catprs.h (𝜑𝐻 = (Hom ‘𝐶))
catprs.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
catprs ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem catprs
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2729 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
4 catprs.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐶 ∈ Cat)
6 simpr1 1195 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
7 catprs.b . . . . . . . 8 (𝜑𝐵 = (Base‘𝐶))
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐵 = (Base‘𝐶))
96, 8eleqtrd 2830 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 ∈ (Base‘𝐶))
101, 2, 3, 5, 9catidcl 17588 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
11 catprs.h . . . . . . 7 (𝜑𝐻 = (Hom ‘𝐶))
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐻 = (Hom ‘𝐶))
1312oveqd 7366 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐻𝑋) = (𝑋(Hom ‘𝐶)𝑋))
1410, 13eleqtrrd 2831 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
1514ne0d 4293 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐻𝑋) ≠ ∅)
16 catprs.1 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
1716adantr 480 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
1817, 6, 6catprslem 48995 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ↔ (𝑋𝐻𝑋) ≠ ∅))
1915, 18mpbird 257 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 𝑋)
2011ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝐻 = (Hom ‘𝐶))
2120oveqd 7366 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑍) = (𝑋(Hom ‘𝐶)𝑍))
227eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑋𝐵𝑋 ∈ (Base‘𝐶)))
237eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑌𝐵𝑌 ∈ (Base‘𝐶)))
247eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑍𝐵𝑍 ∈ (Base‘𝐶)))
2522, 23, 243anbi123d 1438 . . . . . . 7 (𝜑 → ((𝑋𝐵𝑌𝐵𝑍𝐵) ↔ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))))
2625pm5.32i 574 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ↔ (𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))))
27 eqid 2729 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
284ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝐶 ∈ Cat)
29 simplr1 1216 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 ∈ (Base‘𝐶))
30 simplr2 1217 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑌 ∈ (Base‘𝐶))
31 simplr3 1218 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑍 ∈ (Base‘𝐶))
3220oveqd 7366 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
33 simpr2 1196 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
3417, 6, 33catprslem 48995 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
3534biimpa 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑌) → (𝑋𝐻𝑌) ≠ ∅)
3635adantrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑌) ≠ ∅)
3732, 36eqnetrrd 2993 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑌) ≠ ∅)
3826, 37sylanbr 582 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑌) ≠ ∅)
3920oveqd 7366 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍))
40 simpr3 1197 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
4117, 33, 40catprslem 48995 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍 ↔ (𝑌𝐻𝑍) ≠ ∅))
4241biimpa 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑌 𝑍) → (𝑌𝐻𝑍) ≠ ∅)
4342adantrl 716 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌𝐻𝑍) ≠ ∅)
4439, 43eqnetrrd 2993 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌(Hom ‘𝐶)𝑍) ≠ ∅)
4526, 44sylanbr 582 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌(Hom ‘𝐶)𝑍) ≠ ∅)
461, 2, 27, 28, 29, 30, 31, 38, 45catcone0 17593 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑍) ≠ ∅)
4726, 46sylanb 581 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑍) ≠ ∅)
4821, 47eqnetrd 2992 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑍) ≠ ∅)
4917, 6, 40catprslem 48995 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 ↔ (𝑋𝐻𝑍) ≠ ∅))
5049adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋 𝑍 ↔ (𝑋𝐻𝑍) ≠ ∅))
5148, 50mpbird 257 . . 3 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
5251ex 412 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))
5319, 52jca 511 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4284   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-cat 17574  df-cid 17575
This theorem is referenced by:  catprs2  48997
  Copyright terms: Public domain W3C validator