Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprs Structured version   Visualization version   GIF version

Theorem catprs 46244
Description: A preorder can be extracted from a category. See catprs2 46245 for more details. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catprs.1 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
catprs.b (𝜑𝐵 = (Base‘𝐶))
catprs.h (𝜑𝐻 = (Hom ‘𝐶))
catprs.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
catprs ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem catprs
StepHypRef Expression
1 eqid 2739 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2739 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2739 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
4 catprs.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐶 ∈ Cat)
6 simpr1 1192 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
7 catprs.b . . . . . . . 8 (𝜑𝐵 = (Base‘𝐶))
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐵 = (Base‘𝐶))
96, 8eleqtrd 2842 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 ∈ (Base‘𝐶))
101, 2, 3, 5, 9catidcl 17372 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
11 catprs.h . . . . . . 7 (𝜑𝐻 = (Hom ‘𝐶))
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐻 = (Hom ‘𝐶))
1312oveqd 7285 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐻𝑋) = (𝑋(Hom ‘𝐶)𝑋))
1410, 13eleqtrrd 2843 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
1514ne0d 4274 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐻𝑋) ≠ ∅)
16 catprs.1 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
1716adantr 480 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
1817, 6, 6catprslem 46243 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ↔ (𝑋𝐻𝑋) ≠ ∅))
1915, 18mpbird 256 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 𝑋)
2011ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝐻 = (Hom ‘𝐶))
2120oveqd 7285 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑍) = (𝑋(Hom ‘𝐶)𝑍))
227eleq2d 2825 . . . . . . . 8 (𝜑 → (𝑋𝐵𝑋 ∈ (Base‘𝐶)))
237eleq2d 2825 . . . . . . . 8 (𝜑 → (𝑌𝐵𝑌 ∈ (Base‘𝐶)))
247eleq2d 2825 . . . . . . . 8 (𝜑 → (𝑍𝐵𝑍 ∈ (Base‘𝐶)))
2522, 23, 243anbi123d 1434 . . . . . . 7 (𝜑 → ((𝑋𝐵𝑌𝐵𝑍𝐵) ↔ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))))
2625pm5.32i 574 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ↔ (𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))))
27 eqid 2739 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
284ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝐶 ∈ Cat)
29 simplr1 1213 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 ∈ (Base‘𝐶))
30 simplr2 1214 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑌 ∈ (Base‘𝐶))
31 simplr3 1215 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑍 ∈ (Base‘𝐶))
3220oveqd 7285 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
33 simpr2 1193 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
3417, 6, 33catprslem 46243 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
3534biimpa 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑌) → (𝑋𝐻𝑌) ≠ ∅)
3635adantrr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑌) ≠ ∅)
3732, 36eqnetrrd 3013 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑌) ≠ ∅)
3826, 37sylanbr 581 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑌) ≠ ∅)
3920oveqd 7285 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍))
40 simpr3 1194 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
4117, 33, 40catprslem 46243 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍 ↔ (𝑌𝐻𝑍) ≠ ∅))
4241biimpa 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑌 𝑍) → (𝑌𝐻𝑍) ≠ ∅)
4342adantrl 712 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌𝐻𝑍) ≠ ∅)
4439, 43eqnetrrd 3013 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌(Hom ‘𝐶)𝑍) ≠ ∅)
4526, 44sylanbr 581 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑌(Hom ‘𝐶)𝑍) ≠ ∅)
461, 2, 27, 28, 29, 30, 31, 38, 45catcone0 17377 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑍) ≠ ∅)
4726, 46sylanb 580 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋(Hom ‘𝐶)𝑍) ≠ ∅)
4821, 47eqnetrd 3012 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋𝐻𝑍) ≠ ∅)
4917, 6, 40catprslem 46243 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 ↔ (𝑋𝐻𝑍) ≠ ∅))
5049adantr 480 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → (𝑋 𝑍 ↔ (𝑋𝐻𝑍) ≠ ∅))
5148, 50mpbird 256 . . 3 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
5251ex 412 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))
5319, 52jca 511 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  c0 4261   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  Hom chom 16954  compcco 16955  Catccat 17354  Idccid 17355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-cat 17358  df-cid 17359
This theorem is referenced by:  catprs2  46245
  Copyright terms: Public domain W3C validator