Step | Hyp | Ref
| Expression |
1 | | topdlat.i |
. . . 4
β’ πΌ = (toIncβπ½) |
2 | 1 | topclat 47711 |
. . 3
β’ (π½ β Top β πΌ β CLat) |
3 | | clatl 18466 |
. . 3
β’ (πΌ β CLat β πΌ β Lat) |
4 | 2, 3 | syl 17 |
. 2
β’ (π½ β Top β πΌ β Lat) |
5 | | simpl 482 |
. . . . . 6
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β π½ β Top) |
6 | | simpr2 1194 |
. . . . . . 7
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β π¦ β (BaseβπΌ)) |
7 | 1 | ipobas 18489 |
. . . . . . . 8
β’ (π½ β Top β π½ = (BaseβπΌ)) |
8 | 5, 7 | syl 17 |
. . . . . . 7
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β π½ = (BaseβπΌ)) |
9 | 6, 8 | eleqtrrd 2835 |
. . . . . 6
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β π¦ β π½) |
10 | | simpr3 1195 |
. . . . . . 7
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β π§ β (BaseβπΌ)) |
11 | 10, 8 | eleqtrrd 2835 |
. . . . . 6
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β π§ β π½) |
12 | | eqid 2731 |
. . . . . 6
β’
(joinβπΌ) =
(joinβπΌ) |
13 | 1, 5, 9, 11, 12 | toplatjoin 47715 |
. . . . 5
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π¦(joinβπΌ)π§) = (π¦ βͺ π§)) |
14 | 13 | oveq2d 7428 |
. . . 4
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π₯(meetβπΌ)(π¦(joinβπΌ)π§)) = (π₯(meetβπΌ)(π¦ βͺ π§))) |
15 | | simpr1 1193 |
. . . . . 6
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β π₯ β (BaseβπΌ)) |
16 | 15, 8 | eleqtrrd 2835 |
. . . . 5
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β π₯ β π½) |
17 | | unopn 22626 |
. . . . . 6
β’ ((π½ β Top β§ π¦ β π½ β§ π§ β π½) β (π¦ βͺ π§) β π½) |
18 | 5, 9, 11, 17 | syl3anc 1370 |
. . . . 5
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π¦ βͺ π§) β π½) |
19 | | eqid 2731 |
. . . . 5
β’
(meetβπΌ) =
(meetβπΌ) |
20 | 1, 5, 16, 18, 19 | toplatmeet 47716 |
. . . 4
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π₯(meetβπΌ)(π¦ βͺ π§)) = (π₯ β© (π¦ βͺ π§))) |
21 | | inopn 22622 |
. . . . . . 7
β’ ((π½ β Top β§ π₯ β π½ β§ π¦ β π½) β (π₯ β© π¦) β π½) |
22 | 5, 16, 9, 21 | syl3anc 1370 |
. . . . . 6
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π₯ β© π¦) β π½) |
23 | | inopn 22622 |
. . . . . . 7
β’ ((π½ β Top β§ π₯ β π½ β§ π§ β π½) β (π₯ β© π§) β π½) |
24 | 5, 16, 11, 23 | syl3anc 1370 |
. . . . . 6
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π₯ β© π§) β π½) |
25 | 1, 5, 22, 24, 12 | toplatjoin 47715 |
. . . . 5
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β ((π₯ β© π¦)(joinβπΌ)(π₯ β© π§)) = ((π₯ β© π¦) βͺ (π₯ β© π§))) |
26 | 1, 5, 16, 9, 19 | toplatmeet 47716 |
. . . . . 6
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π₯(meetβπΌ)π¦) = (π₯ β© π¦)) |
27 | 1, 5, 16, 11, 19 | toplatmeet 47716 |
. . . . . 6
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π₯(meetβπΌ)π§) = (π₯ β© π§)) |
28 | 26, 27 | oveq12d 7430 |
. . . . 5
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β ((π₯(meetβπΌ)π¦)(joinβπΌ)(π₯(meetβπΌ)π§)) = ((π₯ β© π¦)(joinβπΌ)(π₯ β© π§))) |
29 | | indi 4273 |
. . . . . 6
β’ (π₯ β© (π¦ βͺ π§)) = ((π₯ β© π¦) βͺ (π₯ β© π§)) |
30 | 29 | a1i 11 |
. . . . 5
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π₯ β© (π¦ βͺ π§)) = ((π₯ β© π¦) βͺ (π₯ β© π§))) |
31 | 25, 28, 30 | 3eqtr4rd 2782 |
. . . 4
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π₯ β© (π¦ βͺ π§)) = ((π₯(meetβπΌ)π¦)(joinβπΌ)(π₯(meetβπΌ)π§))) |
32 | 14, 20, 31 | 3eqtrd 2775 |
. . 3
β’ ((π½ β Top β§ (π₯ β (BaseβπΌ) β§ π¦ β (BaseβπΌ) β§ π§ β (BaseβπΌ))) β (π₯(meetβπΌ)(π¦(joinβπΌ)π§)) = ((π₯(meetβπΌ)π¦)(joinβπΌ)(π₯(meetβπΌ)π§))) |
33 | 32 | ralrimivvva 3202 |
. 2
β’ (π½ β Top β βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)βπ§ β (BaseβπΌ)(π₯(meetβπΌ)(π¦(joinβπΌ)π§)) = ((π₯(meetβπΌ)π¦)(joinβπΌ)(π₯(meetβπΌ)π§))) |
34 | | eqid 2731 |
. . 3
β’
(BaseβπΌ) =
(BaseβπΌ) |
35 | 34, 12, 19 | isdlat 18480 |
. 2
β’ (πΌ β DLat β (πΌ β Lat β§ βπ₯ β (BaseβπΌ)βπ¦ β (BaseβπΌ)βπ§ β (BaseβπΌ)(π₯(meetβπΌ)(π¦(joinβπΌ)π§)) = ((π₯(meetβπΌ)π¦)(joinβπΌ)(π₯(meetβπΌ)π§)))) |
36 | 4, 33, 35 | sylanbrc 582 |
1
β’ (π½ β Top β πΌ β DLat) |