Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdlat Structured version   Visualization version   GIF version

Theorem topdlat 46178
Description: A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.)
Hypothesis
Ref Expression
topdlat.i 𝐼 = (toInc‘𝐽)
Assertion
Ref Expression
topdlat (𝐽 ∈ Top → 𝐼 ∈ DLat)

Proof of Theorem topdlat
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topdlat.i . . . 4 𝐼 = (toInc‘𝐽)
21topclat 46172 . . 3 (𝐽 ∈ Top → 𝐼 ∈ CLat)
3 clatl 18141 . . 3 (𝐼 ∈ CLat → 𝐼 ∈ Lat)
42, 3syl 17 . 2 (𝐽 ∈ Top → 𝐼 ∈ Lat)
5 simpl 482 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → 𝐽 ∈ Top)
6 simpr2 1193 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → 𝑦 ∈ (Base‘𝐼))
71ipobas 18164 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 = (Base‘𝐼))
85, 7syl 17 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → 𝐽 = (Base‘𝐼))
96, 8eleqtrrd 2842 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → 𝑦𝐽)
10 simpr3 1194 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → 𝑧 ∈ (Base‘𝐼))
1110, 8eleqtrrd 2842 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → 𝑧𝐽)
12 eqid 2738 . . . . . 6 (join‘𝐼) = (join‘𝐼)
131, 5, 9, 11, 12toplatjoin 46176 . . . . 5 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑦(join‘𝐼)𝑧) = (𝑦𝑧))
1413oveq2d 7271 . . . 4 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑥(meet‘𝐼)(𝑦(join‘𝐼)𝑧)) = (𝑥(meet‘𝐼)(𝑦𝑧)))
15 simpr1 1192 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → 𝑥 ∈ (Base‘𝐼))
1615, 8eleqtrrd 2842 . . . . 5 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → 𝑥𝐽)
17 unopn 21960 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝐽𝑧𝐽) → (𝑦𝑧) ∈ 𝐽)
185, 9, 11, 17syl3anc 1369 . . . . 5 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑦𝑧) ∈ 𝐽)
19 eqid 2738 . . . . 5 (meet‘𝐼) = (meet‘𝐼)
201, 5, 16, 18, 19toplatmeet 46177 . . . 4 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑥(meet‘𝐼)(𝑦𝑧)) = (𝑥 ∩ (𝑦𝑧)))
21 inopn 21956 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑦𝐽) → (𝑥𝑦) ∈ 𝐽)
225, 16, 9, 21syl3anc 1369 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑥𝑦) ∈ 𝐽)
23 inopn 21956 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑧𝐽) → (𝑥𝑧) ∈ 𝐽)
245, 16, 11, 23syl3anc 1369 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑥𝑧) ∈ 𝐽)
251, 5, 22, 24, 12toplatjoin 46176 . . . . 5 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → ((𝑥𝑦)(join‘𝐼)(𝑥𝑧)) = ((𝑥𝑦) ∪ (𝑥𝑧)))
261, 5, 16, 9, 19toplatmeet 46177 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑥(meet‘𝐼)𝑦) = (𝑥𝑦))
271, 5, 16, 11, 19toplatmeet 46177 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑥(meet‘𝐼)𝑧) = (𝑥𝑧))
2826, 27oveq12d 7273 . . . . 5 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → ((𝑥(meet‘𝐼)𝑦)(join‘𝐼)(𝑥(meet‘𝐼)𝑧)) = ((𝑥𝑦)(join‘𝐼)(𝑥𝑧)))
29 indi 4204 . . . . . 6 (𝑥 ∩ (𝑦𝑧)) = ((𝑥𝑦) ∪ (𝑥𝑧))
3029a1i 11 . . . . 5 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑥 ∩ (𝑦𝑧)) = ((𝑥𝑦) ∪ (𝑥𝑧)))
3125, 28, 303eqtr4rd 2789 . . . 4 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑥 ∩ (𝑦𝑧)) = ((𝑥(meet‘𝐼)𝑦)(join‘𝐼)(𝑥(meet‘𝐼)𝑧)))
3214, 20, 313eqtrd 2782 . . 3 ((𝐽 ∈ Top ∧ (𝑥 ∈ (Base‘𝐼) ∧ 𝑦 ∈ (Base‘𝐼) ∧ 𝑧 ∈ (Base‘𝐼))) → (𝑥(meet‘𝐼)(𝑦(join‘𝐼)𝑧)) = ((𝑥(meet‘𝐼)𝑦)(join‘𝐼)(𝑥(meet‘𝐼)𝑧)))
3332ralrimivvva 3115 . 2 (𝐽 ∈ Top → ∀𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)∀𝑧 ∈ (Base‘𝐼)(𝑥(meet‘𝐼)(𝑦(join‘𝐼)𝑧)) = ((𝑥(meet‘𝐼)𝑦)(join‘𝐼)(𝑥(meet‘𝐼)𝑧)))
34 eqid 2738 . . 3 (Base‘𝐼) = (Base‘𝐼)
3534, 12, 19isdlat 18155 . 2 (𝐼 ∈ DLat ↔ (𝐼 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐼)∀𝑦 ∈ (Base‘𝐼)∀𝑧 ∈ (Base‘𝐼)(𝑥(meet‘𝐼)(𝑦(join‘𝐼)𝑧)) = ((𝑥(meet‘𝐼)𝑦)(join‘𝐼)(𝑥(meet‘𝐼)𝑧))))
364, 33, 35sylanbrc 582 1 (𝐽 ∈ Top → 𝐼 ∈ DLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cun 3881  cin 3882  cfv 6418  (class class class)co 7255  Basecbs 16840  joincjn 17944  meetcmee 17945  Latclat 18064  CLatccla 18131  DLatcdlat 18153  toInccipo 18160  Topctop 21950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-tset 16907  df-ple 16908  df-ocomp 16909  df-odu 17921  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-lat 18065  df-clat 18132  df-dlat 18154  df-ipo 18161  df-top 21951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator