MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvdisjv Structured version   Visualization version   GIF version

Theorem cbvdisjv 5119
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
cbvdisjv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvdisjv (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvdisjv
StepHypRef Expression
1 nfcv 2899 . 2 𝑦𝐵
2 nfcv 2899 . 2 𝑥𝐶
3 cbvdisjv.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvdisj 5118 1 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  Disj wdisj 5108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-mo 2530  df-cleq 2720  df-clel 2806  df-nfc 2881  df-rmo 3372  df-disj 5109
This theorem is referenced by:  uniioombllem4  25509  hashunif  32570  tocyccntz  32860  totprob  34042  disjrnmpt2  44552  ismeannd  45846  psmeasure  45850  volmea  45853  meaiuninclem  45859  caratheodorylem1  45905  caratheodory  45907
  Copyright terms: Public domain W3C validator