![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvdisjv | Structured version Visualization version GIF version |
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
cbvdisjv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvdisjv | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2945 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2945 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvdisjv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvdisj 4825 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 Disj wdisj 4815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ral 3098 df-rex 3099 df-reu 3100 df-rmo 3101 df-disj 4816 |
This theorem is referenced by: uniioombllem4 23698 hashunif 30084 totprob 31010 disjrnmpt2 40133 ismeannd 41431 psmeasure 41435 volmea 41438 meaiuninclem 41444 caratheodorylem1 41490 caratheodory 41492 |
Copyright terms: Public domain | W3C validator |