MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvdisjv Structured version   Visualization version   GIF version

Theorem cbvdisjv 5046
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
cbvdisjv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvdisjv (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvdisjv
StepHypRef Expression
1 nfcv 2906 . 2 𝑦𝐵
2 nfcv 2906 . 2 𝑥𝐶
3 cbvdisjv.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvdisj 5045 1 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  Disj wdisj 5035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-mo 2540  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rmo 3071  df-disj 5036
This theorem is referenced by:  uniioombllem4  24655  hashunif  31028  tocyccntz  31313  totprob  32294  disjrnmpt2  42615  ismeannd  43895  psmeasure  43899  volmea  43902  meaiuninclem  43908  caratheodorylem1  43954  caratheodory  43956
  Copyright terms: Public domain W3C validator