Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvdisjv | Structured version Visualization version GIF version |
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
cbvdisjv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvdisjv | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvdisjv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvdisj 5067 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 Disj wdisj 5057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-mo 2538 df-cleq 2728 df-clel 2814 df-nfc 2886 df-rmo 3349 df-disj 5058 |
This theorem is referenced by: uniioombllem4 24856 hashunif 31413 tocyccntz 31698 totprob 32694 disjrnmpt2 43061 ismeannd 44350 psmeasure 44354 volmea 44357 meaiuninclem 44363 caratheodorylem1 44409 caratheodory 44411 |
Copyright terms: Public domain | W3C validator |