![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvdisjv | Structured version Visualization version GIF version |
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
cbvdisjv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvdisjv | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvdisjv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvdisj 5118 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 Disj wdisj 5108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-mo 2530 df-cleq 2720 df-clel 2806 df-nfc 2881 df-rmo 3372 df-disj 5109 |
This theorem is referenced by: uniioombllem4 25509 hashunif 32570 tocyccntz 32860 totprob 34042 disjrnmpt2 44552 ismeannd 45846 psmeasure 45850 volmea 45853 meaiuninclem 45859 caratheodorylem1 45905 caratheodory 45907 |
Copyright terms: Public domain | W3C validator |