MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvdisjv Structured version   Visualization version   GIF version

Theorem cbvdisjv 5126
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
cbvdisjv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvdisjv (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvdisjv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvdisjv.1 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
21eleq2d 2825 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
32cbvrmovw 3401 . . 3 (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑦𝐴 𝑧𝐶)
43albii 1816 . 2 (∀𝑧∃*𝑥𝐴 𝑧𝐵 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
5 df-disj 5116 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
6 df-disj 5116 . 2 (Disj 𝑦𝐴 𝐶 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
74, 5, 63bitr4i 303 1 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2106  ∃*wrmo 3377  Disj wdisj 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-mo 2538  df-cleq 2727  df-clel 2814  df-rmo 3378  df-disj 5116
This theorem is referenced by:  uniioombllem4  25635  hashunif  32816  tocyccntz  33147  totprob  34409  disjrnmpt2  45131  ismeannd  46423  psmeasure  46427  volmea  46430  meaiuninclem  46436  caratheodorylem1  46482  caratheodory  46484
  Copyright terms: Public domain W3C validator