Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvdisjv | Structured version Visualization version GIF version |
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
cbvdisjv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvdisjv | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvdisjv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvdisj 5045 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rmo 3071 df-disj 5036 |
This theorem is referenced by: uniioombllem4 24655 hashunif 31028 tocyccntz 31313 totprob 32294 disjrnmpt2 42615 ismeannd 43895 psmeasure 43899 volmea 43902 meaiuninclem 43908 caratheodorylem1 43954 caratheodory 43956 |
Copyright terms: Public domain | W3C validator |