Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodory Structured version   Visualization version   GIF version

Theorem caratheodory 46505
Description: Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodory.o (𝜑𝑂 ∈ OutMeas)
caratheodory.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caratheodory (𝜑 → (𝑂𝑆) ∈ Meas)

Proof of Theorem caratheodory
Dummy variables 𝑎 𝑒 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caratheodory.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 caratheodory.s . . 3 𝑆 = (CaraGen‘𝑂)
31, 2caragensal 46502 . 2 (𝜑𝑆 ∈ SAlg)
4 eqid 2735 . . . 4 dom 𝑂 = dom 𝑂
51, 4omef 46473 . . 3 (𝜑𝑂:𝒫 dom 𝑂⟶(0[,]+∞))
6 caragenval 46470 . . . . . . 7 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
71, 6syl 17 . . . . . 6 (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
87eqcomd 2741 . . . . 5 (𝜑 → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} = (CaraGen‘𝑂))
92eqcomi 2744 . . . . . 6 (CaraGen‘𝑂) = 𝑆
109a1i 11 . . . . 5 (𝜑 → (CaraGen‘𝑂) = 𝑆)
118, 10eqtr2d 2771 . . . 4 (𝜑𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
12 ssrab2 4055 . . . 4 {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂
1311, 12eqsstrdi 4003 . . 3 (𝜑𝑆 ⊆ 𝒫 dom 𝑂)
145, 13fssresd 6744 . 2 (𝜑 → (𝑂𝑆):𝑆⟶(0[,]+∞))
151, 2caragen0 46483 . . . 4 (𝜑 → ∅ ∈ 𝑆)
16 fvres 6894 . . . 4 (∅ ∈ 𝑆 → ((𝑂𝑆)‘∅) = (𝑂‘∅))
1715, 16syl 17 . . 3 (𝜑 → ((𝑂𝑆)‘∅) = (𝑂‘∅))
181ome0 46474 . . 3 (𝜑 → (𝑂‘∅) = 0)
1917, 18eqtrd 2770 . 2 (𝜑 → ((𝑂𝑆)‘∅) = 0)
20 simp1 1136 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
21 simp2 1137 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶𝑆)
22 fveq2 6875 . . . . . . 7 (𝑛 = 𝑚 → (𝑒𝑛) = (𝑒𝑚))
2322cbvdisjv 5097 . . . . . 6 (Disj 𝑛 ∈ ℕ (𝑒𝑛) ↔ Disj 𝑚 ∈ ℕ (𝑒𝑚))
2423biimpi 216 . . . . 5 (Disj 𝑛 ∈ ℕ (𝑒𝑛) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
25243ad2ant3 1135 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
2613ad2ant1 1133 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑂 ∈ OutMeas)
27 simp2 1137 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑒:ℕ⟶𝑆)
2823biimpri 228 . . . . . 6 (Disj 𝑚 ∈ ℕ (𝑒𝑚) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
29283ad2ant3 1135 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
30 fveq2 6875 . . . . . . 7 (𝑚 = 𝑛 → (𝑒𝑚) = (𝑒𝑛))
3130cbviunv 5016 . . . . . 6 𝑚 ∈ (1...𝑗)(𝑒𝑚) = 𝑛 ∈ (1...𝑗)(𝑒𝑛)
3231mpteq2i 5217 . . . . 5 (𝑗 ∈ ℕ ↦ 𝑚 ∈ (1...𝑗)(𝑒𝑚)) = (𝑗 ∈ ℕ ↦ 𝑛 ∈ (1...𝑗)(𝑒𝑛))
3326, 4, 2, 27, 29, 32caratheodorylem2 46504 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → (𝑂 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
3420, 21, 25, 33syl3anc 1373 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑂 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
353adantr 480 . . . . . 6 ((𝜑𝑒:ℕ⟶𝑆) → 𝑆 ∈ SAlg)
36 nnenom 13996 . . . . . . . 8 ℕ ≈ ω
37 endom 8991 . . . . . . . 8 (ℕ ≈ ω → ℕ ≼ ω)
3836, 37ax-mp 5 . . . . . . 7 ℕ ≼ ω
3938a1i 11 . . . . . 6 ((𝜑𝑒:ℕ⟶𝑆) → ℕ ≼ ω)
40 ffvelcdm 7070 . . . . . . 7 ((𝑒:ℕ⟶𝑆𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
4140adantll 714 . . . . . 6 (((𝜑𝑒:ℕ⟶𝑆) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
4235, 39, 41saliuncl 46300 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
43 fvres 6894 . . . . 5 ( 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆 → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
4442, 43syl 17 . . . 4 ((𝜑𝑒:ℕ⟶𝑆) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
45443adant3 1132 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
46 fvres 6894 . . . . . . 7 ((𝑒𝑛) ∈ 𝑆 → ((𝑂𝑆)‘(𝑒𝑛)) = (𝑂‘(𝑒𝑛)))
4741, 46syl 17 . . . . . 6 (((𝜑𝑒:ℕ⟶𝑆) ∧ 𝑛 ∈ ℕ) → ((𝑂𝑆)‘(𝑒𝑛)) = (𝑂‘(𝑒𝑛)))
4847mpteq2dva 5214 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆) → (𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛))))
4948fveq2d 6879 . . . 4 ((𝜑𝑒:ℕ⟶𝑆) → (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
50493adant3 1132 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
5134, 45, 503eqtr4d 2780 . 2 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))))
523, 14, 19, 51ismeannd 46444 1 (𝜑 → (𝑂𝑆) ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cdif 3923  cin 3925  c0 4308  𝒫 cpw 4575   cuni 4883   ciun 4967  Disj wdisj 5086   class class class wbr 5119  cmpt 5201  dom cdm 5654  cres 5656  wf 6526  cfv 6530  (class class class)co 7403  ωcom 7859  cen 8954  cdom 8955  0cc0 11127  1c1 11128  +∞cpnf 11264  cn 12238   +𝑒 cxad 13124  [,]cicc 13363  ...cfz 13522  SAlgcsalg 46285  Σ^csumge0 46339  Meascmea 46426  OutMeascome 46466  CaraGenccaragen 46468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-acn 9954  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xadd 13127  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701  df-salg 46286  df-sumge0 46340  df-mea 46427  df-ome 46467  df-caragen 46469
This theorem is referenced by:  vonmea  46551
  Copyright terms: Public domain W3C validator