Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodory Structured version   Visualization version   GIF version

Theorem caratheodory 42804
Description: Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodory.o (𝜑𝑂 ∈ OutMeas)
caratheodory.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caratheodory (𝜑 → (𝑂𝑆) ∈ Meas)

Proof of Theorem caratheodory
Dummy variables 𝑎 𝑒 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caratheodory.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 caratheodory.s . . 3 𝑆 = (CaraGen‘𝑂)
31, 2caragensal 42801 . 2 (𝜑𝑆 ∈ SAlg)
4 eqid 2821 . . . 4 dom 𝑂 = dom 𝑂
51, 4omef 42772 . . 3 (𝜑𝑂:𝒫 dom 𝑂⟶(0[,]+∞))
6 caragenval 42769 . . . . . . 7 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
71, 6syl 17 . . . . . 6 (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
87eqcomd 2827 . . . . 5 (𝜑 → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} = (CaraGen‘𝑂))
92eqcomi 2830 . . . . . 6 (CaraGen‘𝑂) = 𝑆
109a1i 11 . . . . 5 (𝜑 → (CaraGen‘𝑂) = 𝑆)
118, 10eqtr2d 2857 . . . 4 (𝜑𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
12 ssrab2 4055 . . . 4 {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂
1311, 12eqsstrdi 4020 . . 3 (𝜑𝑆 ⊆ 𝒫 dom 𝑂)
145, 13fssresd 6539 . 2 (𝜑 → (𝑂𝑆):𝑆⟶(0[,]+∞))
151, 2caragen0 42782 . . . 4 (𝜑 → ∅ ∈ 𝑆)
16 fvres 6683 . . . 4 (∅ ∈ 𝑆 → ((𝑂𝑆)‘∅) = (𝑂‘∅))
1715, 16syl 17 . . 3 (𝜑 → ((𝑂𝑆)‘∅) = (𝑂‘∅))
181ome0 42773 . . 3 (𝜑 → (𝑂‘∅) = 0)
1917, 18eqtrd 2856 . 2 (𝜑 → ((𝑂𝑆)‘∅) = 0)
20 simp1 1132 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
21 simp2 1133 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶𝑆)
22 fveq2 6664 . . . . . . 7 (𝑛 = 𝑚 → (𝑒𝑛) = (𝑒𝑚))
2322cbvdisjv 5034 . . . . . 6 (Disj 𝑛 ∈ ℕ (𝑒𝑛) ↔ Disj 𝑚 ∈ ℕ (𝑒𝑚))
2423biimpi 218 . . . . 5 (Disj 𝑛 ∈ ℕ (𝑒𝑛) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
25243ad2ant3 1131 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
2613ad2ant1 1129 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑂 ∈ OutMeas)
27 simp2 1133 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑒:ℕ⟶𝑆)
2823biimpri 230 . . . . . 6 (Disj 𝑚 ∈ ℕ (𝑒𝑚) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
29283ad2ant3 1131 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
30 fveq2 6664 . . . . . . 7 (𝑚 = 𝑛 → (𝑒𝑚) = (𝑒𝑛))
3130cbviunv 4957 . . . . . 6 𝑚 ∈ (1...𝑗)(𝑒𝑚) = 𝑛 ∈ (1...𝑗)(𝑒𝑛)
3231mpteq2i 5150 . . . . 5 (𝑗 ∈ ℕ ↦ 𝑚 ∈ (1...𝑗)(𝑒𝑚)) = (𝑗 ∈ ℕ ↦ 𝑛 ∈ (1...𝑗)(𝑒𝑛))
3326, 4, 2, 27, 29, 32caratheodorylem2 42803 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → (𝑂 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
3420, 21, 25, 33syl3anc 1367 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑂 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
353adantr 483 . . . . . 6 ((𝜑𝑒:ℕ⟶𝑆) → 𝑆 ∈ SAlg)
36 nnenom 13342 . . . . . . . 8 ℕ ≈ ω
37 endom 8530 . . . . . . . 8 (ℕ ≈ ω → ℕ ≼ ω)
3836, 37ax-mp 5 . . . . . . 7 ℕ ≼ ω
3938a1i 11 . . . . . 6 ((𝜑𝑒:ℕ⟶𝑆) → ℕ ≼ ω)
40 ffvelrn 6843 . . . . . . 7 ((𝑒:ℕ⟶𝑆𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
4140adantll 712 . . . . . 6 (((𝜑𝑒:ℕ⟶𝑆) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
4235, 39, 41saliuncl 42601 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
43 fvres 6683 . . . . 5 ( 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆 → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
4442, 43syl 17 . . . 4 ((𝜑𝑒:ℕ⟶𝑆) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
45443adant3 1128 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
46 fvres 6683 . . . . . . 7 ((𝑒𝑛) ∈ 𝑆 → ((𝑂𝑆)‘(𝑒𝑛)) = (𝑂‘(𝑒𝑛)))
4741, 46syl 17 . . . . . 6 (((𝜑𝑒:ℕ⟶𝑆) ∧ 𝑛 ∈ ℕ) → ((𝑂𝑆)‘(𝑒𝑛)) = (𝑂‘(𝑒𝑛)))
4847mpteq2dva 5153 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆) → (𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛))))
4948fveq2d 6668 . . . 4 ((𝜑𝑒:ℕ⟶𝑆) → (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
50493adant3 1128 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
5134, 45, 503eqtr4d 2866 . 2 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))))
523, 14, 19, 51ismeannd 42743 1 (𝜑 → (𝑂𝑆) ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  cdif 3932  cin 3934  c0 4290  𝒫 cpw 4538   cuni 4831   ciun 4911  Disj wdisj 5023   class class class wbr 5058  cmpt 5138  dom cdm 5549  cres 5551  wf 6345  cfv 6349  (class class class)co 7150  ωcom 7574  cen 8500  cdom 8501  0cc0 10531  1c1 10532  +∞cpnf 10666  cn 11632   +𝑒 cxad 12499  [,]cicc 12735  ...cfz 12886  SAlgcsalg 42587  Σ^csumge0 42638  Meascmea 42725  OutMeascome 42765  CaraGenccaragen 42767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xadd 12502  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-salg 42588  df-sumge0 42639  df-mea 42726  df-ome 42766  df-caragen 42768
This theorem is referenced by:  vonmea  42850
  Copyright terms: Public domain W3C validator