Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodory Structured version   Visualization version   GIF version

Theorem caratheodory 44029
Description: Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodory.o (𝜑𝑂 ∈ OutMeas)
caratheodory.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caratheodory (𝜑 → (𝑂𝑆) ∈ Meas)

Proof of Theorem caratheodory
Dummy variables 𝑎 𝑒 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caratheodory.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 caratheodory.s . . 3 𝑆 = (CaraGen‘𝑂)
31, 2caragensal 44026 . 2 (𝜑𝑆 ∈ SAlg)
4 eqid 2740 . . . 4 dom 𝑂 = dom 𝑂
51, 4omef 43997 . . 3 (𝜑𝑂:𝒫 dom 𝑂⟶(0[,]+∞))
6 caragenval 43994 . . . . . . 7 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
71, 6syl 17 . . . . . 6 (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
87eqcomd 2746 . . . . 5 (𝜑 → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} = (CaraGen‘𝑂))
92eqcomi 2749 . . . . . 6 (CaraGen‘𝑂) = 𝑆
109a1i 11 . . . . 5 (𝜑 → (CaraGen‘𝑂) = 𝑆)
118, 10eqtr2d 2781 . . . 4 (𝜑𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
12 ssrab2 4018 . . . 4 {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂
1311, 12eqsstrdi 3980 . . 3 (𝜑𝑆 ⊆ 𝒫 dom 𝑂)
145, 13fssresd 6638 . 2 (𝜑 → (𝑂𝑆):𝑆⟶(0[,]+∞))
151, 2caragen0 44007 . . . 4 (𝜑 → ∅ ∈ 𝑆)
16 fvres 6788 . . . 4 (∅ ∈ 𝑆 → ((𝑂𝑆)‘∅) = (𝑂‘∅))
1715, 16syl 17 . . 3 (𝜑 → ((𝑂𝑆)‘∅) = (𝑂‘∅))
181ome0 43998 . . 3 (𝜑 → (𝑂‘∅) = 0)
1917, 18eqtrd 2780 . 2 (𝜑 → ((𝑂𝑆)‘∅) = 0)
20 simp1 1135 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
21 simp2 1136 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶𝑆)
22 fveq2 6769 . . . . . . 7 (𝑛 = 𝑚 → (𝑒𝑛) = (𝑒𝑚))
2322cbvdisjv 5055 . . . . . 6 (Disj 𝑛 ∈ ℕ (𝑒𝑛) ↔ Disj 𝑚 ∈ ℕ (𝑒𝑚))
2423biimpi 215 . . . . 5 (Disj 𝑛 ∈ ℕ (𝑒𝑛) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
25243ad2ant3 1134 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
2613ad2ant1 1132 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑂 ∈ OutMeas)
27 simp2 1136 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑒:ℕ⟶𝑆)
2823biimpri 227 . . . . . 6 (Disj 𝑚 ∈ ℕ (𝑒𝑚) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
29283ad2ant3 1134 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
30 fveq2 6769 . . . . . . 7 (𝑚 = 𝑛 → (𝑒𝑚) = (𝑒𝑛))
3130cbviunv 4975 . . . . . 6 𝑚 ∈ (1...𝑗)(𝑒𝑚) = 𝑛 ∈ (1...𝑗)(𝑒𝑛)
3231mpteq2i 5184 . . . . 5 (𝑗 ∈ ℕ ↦ 𝑚 ∈ (1...𝑗)(𝑒𝑚)) = (𝑗 ∈ ℕ ↦ 𝑛 ∈ (1...𝑗)(𝑒𝑛))
3326, 4, 2, 27, 29, 32caratheodorylem2 44028 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → (𝑂 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
3420, 21, 25, 33syl3anc 1370 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑂 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
353adantr 481 . . . . . 6 ((𝜑𝑒:ℕ⟶𝑆) → 𝑆 ∈ SAlg)
36 nnenom 13690 . . . . . . . 8 ℕ ≈ ω
37 endom 8742 . . . . . . . 8 (ℕ ≈ ω → ℕ ≼ ω)
3836, 37ax-mp 5 . . . . . . 7 ℕ ≼ ω
3938a1i 11 . . . . . 6 ((𝜑𝑒:ℕ⟶𝑆) → ℕ ≼ ω)
40 ffvelrn 6954 . . . . . . 7 ((𝑒:ℕ⟶𝑆𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
4140adantll 711 . . . . . 6 (((𝜑𝑒:ℕ⟶𝑆) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
4235, 39, 41saliuncl 43826 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
43 fvres 6788 . . . . 5 ( 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆 → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
4442, 43syl 17 . . . 4 ((𝜑𝑒:ℕ⟶𝑆) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
45443adant3 1131 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
46 fvres 6788 . . . . . . 7 ((𝑒𝑛) ∈ 𝑆 → ((𝑂𝑆)‘(𝑒𝑛)) = (𝑂‘(𝑒𝑛)))
4741, 46syl 17 . . . . . 6 (((𝜑𝑒:ℕ⟶𝑆) ∧ 𝑛 ∈ ℕ) → ((𝑂𝑆)‘(𝑒𝑛)) = (𝑂‘(𝑒𝑛)))
4847mpteq2dva 5179 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆) → (𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛))))
4948fveq2d 6773 . . . 4 ((𝜑𝑒:ℕ⟶𝑆) → (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
50493adant3 1131 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
5134, 45, 503eqtr4d 2790 . 2 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))))
523, 14, 19, 51ismeannd 43968 1 (𝜑 → (𝑂𝑆) ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  {crab 3070  cdif 3889  cin 3891  c0 4262  𝒫 cpw 4539   cuni 4845   ciun 4930  Disj wdisj 5044   class class class wbr 5079  cmpt 5162  dom cdm 5589  cres 5591  wf 6427  cfv 6431  (class class class)co 7269  ωcom 7701  cen 8705  cdom 8706  0cc0 10864  1c1 10865  +∞cpnf 10999  cn 11965   +𝑒 cxad 12837  [,]cicc 13073  ...cfz 13230  SAlgcsalg 43812  Σ^csumge0 43863  Meascmea 43950  OutMeascome 43990  CaraGenccaragen 43992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9369  ax-ac2 10212  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-oadd 8286  df-omul 8287  df-er 8473  df-map 8592  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-sup 9171  df-inf 9172  df-oi 9239  df-card 9690  df-acn 9693  df-ac 9865  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-div 11625  df-nn 11966  df-2 12028  df-3 12029  df-n0 12226  df-z 12312  df-uz 12574  df-q 12680  df-rp 12722  df-xadd 12840  df-ico 13076  df-icc 13077  df-fz 13231  df-fzo 13374  df-seq 13712  df-exp 13773  df-hash 14035  df-cj 14800  df-re 14801  df-im 14802  df-sqrt 14936  df-abs 14937  df-clim 15187  df-sum 15388  df-salg 43813  df-sumge0 43864  df-mea 43951  df-ome 43991  df-caragen 43993
This theorem is referenced by:  vonmea  44075
  Copyright terms: Public domain W3C validator