Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodory Structured version   Visualization version   GIF version

Theorem caratheodory 41536
 Description: Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodory.o (𝜑𝑂 ∈ OutMeas)
caratheodory.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caratheodory (𝜑 → (𝑂𝑆) ∈ Meas)

Proof of Theorem caratheodory
Dummy variables 𝑎 𝑒 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caratheodory.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 caratheodory.s . . 3 𝑆 = (CaraGen‘𝑂)
31, 2caragensal 41533 . 2 (𝜑𝑆 ∈ SAlg)
4 eqid 2825 . . . 4 dom 𝑂 = dom 𝑂
51, 4omef 41504 . . 3 (𝜑𝑂:𝒫 dom 𝑂⟶(0[,]+∞))
6 caragenval 41501 . . . . . . 7 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
71, 6syl 17 . . . . . 6 (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
87eqcomd 2831 . . . . 5 (𝜑 → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} = (CaraGen‘𝑂))
92eqcomi 2834 . . . . . 6 (CaraGen‘𝑂) = 𝑆
109a1i 11 . . . . 5 (𝜑 → (CaraGen‘𝑂) = 𝑆)
118, 10eqtr2d 2862 . . . 4 (𝜑𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
12 ssrab2 3912 . . . 4 {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂
1311, 12syl6eqss 3880 . . 3 (𝜑𝑆 ⊆ 𝒫 dom 𝑂)
145, 13fssresd 6308 . 2 (𝜑 → (𝑂𝑆):𝑆⟶(0[,]+∞))
151, 2caragen0 41514 . . . 4 (𝜑 → ∅ ∈ 𝑆)
16 fvres 6452 . . . 4 (∅ ∈ 𝑆 → ((𝑂𝑆)‘∅) = (𝑂‘∅))
1715, 16syl 17 . . 3 (𝜑 → ((𝑂𝑆)‘∅) = (𝑂‘∅))
181ome0 41505 . . 3 (𝜑 → (𝑂‘∅) = 0)
1917, 18eqtrd 2861 . 2 (𝜑 → ((𝑂𝑆)‘∅) = 0)
20 simp1 1172 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
21 simp2 1173 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶𝑆)
22 fveq2 6433 . . . . . . 7 (𝑛 = 𝑚 → (𝑒𝑛) = (𝑒𝑚))
2322cbvdisjv 4852 . . . . . 6 (Disj 𝑛 ∈ ℕ (𝑒𝑛) ↔ Disj 𝑚 ∈ ℕ (𝑒𝑚))
2423biimpi 208 . . . . 5 (Disj 𝑛 ∈ ℕ (𝑒𝑛) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
25243ad2ant3 1171 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
2613ad2ant1 1169 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑂 ∈ OutMeas)
27 simp2 1173 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑒:ℕ⟶𝑆)
2823biimpri 220 . . . . . 6 (Disj 𝑚 ∈ ℕ (𝑒𝑚) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
29283ad2ant3 1171 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
30 fveq2 6433 . . . . . . 7 (𝑚 = 𝑛 → (𝑒𝑚) = (𝑒𝑛))
3130cbviunv 4779 . . . . . 6 𝑚 ∈ (1...𝑗)(𝑒𝑚) = 𝑛 ∈ (1...𝑗)(𝑒𝑛)
3231mpteq2i 4964 . . . . 5 (𝑗 ∈ ℕ ↦ 𝑚 ∈ (1...𝑗)(𝑒𝑚)) = (𝑗 ∈ ℕ ↦ 𝑛 ∈ (1...𝑗)(𝑒𝑛))
3326, 4, 2, 27, 29, 32caratheodorylem2 41535 . . . 4 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑚 ∈ ℕ (𝑒𝑚)) → (𝑂 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
3420, 21, 25, 33syl3anc 1496 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑂 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
353adantr 474 . . . . . 6 ((𝜑𝑒:ℕ⟶𝑆) → 𝑆 ∈ SAlg)
36 nnenom 13074 . . . . . . . 8 ℕ ≈ ω
37 endom 8249 . . . . . . . 8 (ℕ ≈ ω → ℕ ≼ ω)
3836, 37ax-mp 5 . . . . . . 7 ℕ ≼ ω
3938a1i 11 . . . . . 6 ((𝜑𝑒:ℕ⟶𝑆) → ℕ ≼ ω)
40 ffvelrn 6606 . . . . . . 7 ((𝑒:ℕ⟶𝑆𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
4140adantll 707 . . . . . 6 (((𝜑𝑒:ℕ⟶𝑆) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
4235, 39, 41saliuncl 41333 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
43 fvres 6452 . . . . 5 ( 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆 → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
4442, 43syl 17 . . . 4 ((𝜑𝑒:ℕ⟶𝑆) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
45443adant3 1168 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (𝑂 𝑛 ∈ ℕ (𝑒𝑛)))
46 fvres 6452 . . . . . . 7 ((𝑒𝑛) ∈ 𝑆 → ((𝑂𝑆)‘(𝑒𝑛)) = (𝑂‘(𝑒𝑛)))
4741, 46syl 17 . . . . . 6 (((𝜑𝑒:ℕ⟶𝑆) ∧ 𝑛 ∈ ℕ) → ((𝑂𝑆)‘(𝑒𝑛)) = (𝑂‘(𝑒𝑛)))
4847mpteq2dva 4967 . . . . 5 ((𝜑𝑒:ℕ⟶𝑆) → (𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛))))
4948fveq2d 6437 . . . 4 ((𝜑𝑒:ℕ⟶𝑆) → (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
50493adant3 1168 . . 3 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑒𝑛)))))
5134, 45, 503eqtr4d 2871 . 2 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ((𝑂𝑆)‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ ((𝑂𝑆)‘(𝑒𝑛)))))
523, 14, 19, 51ismeannd 41475 1 (𝜑 → (𝑂𝑆) ∈ Meas)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166  ∀wral 3117  {crab 3121   ∖ cdif 3795   ∩ cin 3797  ∅c0 4144  𝒫 cpw 4378  ∪ cuni 4658  ∪ ciun 4740  Disj wdisj 4841   class class class wbr 4873   ↦ cmpt 4952  dom cdm 5342   ↾ cres 5344  ⟶wf 6119  ‘cfv 6123  (class class class)co 6905  ωcom 7326   ≈ cen 8219   ≼ cdom 8220  0cc0 10252  1c1 10253  +∞cpnf 10388  ℕcn 11350   +𝑒 cxad 12230  [,]cicc 12466  ...cfz 12619  SAlgcsalg 41319  Σ^csumge0 41370  Meascmea 41457  OutMeascome 41497  CaraGenccaragen 41499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-ac2 9600  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-disj 4842  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-omul 7831  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-acn 9081  df-ac 9252  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-q 12072  df-rp 12113  df-xadd 12233  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-salg 41320  df-sumge0 41371  df-mea 41458  df-ome 41498  df-caragen 41500 This theorem is referenced by:  vonmea  41582
 Copyright terms: Public domain W3C validator